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� Control of distributed system: more design than control

� Non-stationary dynamical systems (stability, convergence)

� Boundary conditions, input-output, partial integration

� Iteration → evolution-with-damping

in collaboration with Arjan van der Schaft and Peter Breedveld
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Once a system is “designed,” control u is limited

u(x, t) = Fdesign(x) ucontrol(t)

E.g., in reducing vibrations, design is:

traditional: lighter and stiffer (ω ↑)
control-based: optimize input-to-output

vibration is energy “lost” in the system
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design control: position
of the fixture.
Dynamical control:
time-dependence of the
applied force. However,
for every fixture
independently

AN EXAMPLE

F

F
F

F

x

M

dim X = 800, dim DX = Y = 2209
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Model reduction based on responses to F and F̈

error in corner displacement of 2-dof model ∼ 0.014



Cooling of a Plate, as fast as possible

Constant flow heat-exchanger

⇒ ∞-long pipe

since Q̇ = C(Tout − Tin)

Control: geometry of the pipe

inlet

Optimal design: constant

exchange rate per volume
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Control pairs (boundary or distributed)

effort ⊗ flow = power

force ⊗ displacement, voltage ⊗ current, u̇⊗ ∂νf , and ḟ ⊗ ∂νu, etc.

In partial integration (strong ↔ weak):

−
∫
u∆v →

∫
∇u · ∇v −

∫
∂
u∂νv︸ ︷︷ ︸

canceled?

boundary (divergence) terms are normally set to

zero, but can be associated with boundary con-

trol.
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Energy flux S is a pair of input and output

Given the Lagrangian L(y, ẏ), independent of t

and x yields conserved energy E:

Ė =
∫
Ḣ −

∫
∂

S · n

the energy flux S can be decomposed in: effort e

and flow f , naturally the effort being vector-like.

(However, S = fe also possible.)
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Generic differential equation in canonical pairs:
 emicro(x)
fmicro(x)

 =

 0 ∇·
∇ 0


 emacro(x)
fmacro(x)


with the boundary variables eboundary = emacro|∂
and fboundary = fmacro|∂. (1 input-1 output)

E.g. wave equation, diffusion equation, · · ·
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Discretization on function space X ⊗ Y :

X: macroscopic fields (0-forms) ⊂d H1

Y = ∇X microscopic fields (1-forms) ⊂d L2

Energy conservation requires: (state q(x))

� exact integration on X ⊗ Y .

� effective energies
∫
dxH(q(x))→ ∑

V (qh).

� nonlinear: q̈ -or- q̇ = f1(∇f2(∇f3(q, x), x), x).
results with stable nonlinear wave-equations (coll. LAGEP, Lyon)
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piece-wise
φ(z) = az + b
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dim Y = 4

piece-wise
ψ(z) = a
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Two pairs of local function spaces

piece-wise
φ = az2 + bz + c
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dim X = 6
dim Y = 3

piece-wise
ψ = 2az + b
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“Systems of Conservation Laws” (Lax)
→ linear part

Nonlinear parts in energy storage and dissipation
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C(f(x), ė(x)) = 0

R(f(x), e(x)) = 0

I(ḟ(x), e(x)) = 0

e−b , f
−
b e+b , f

+
b
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Iteration → evolution-with-damping
The directional s: ∇i∇jJ = s∇J

is incorporated in the second field.
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keywords: Lyapunov, passitivity control

pick the right damping R, and step size dt

“evolution by PID controller”

remember input-output
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Conclusions

� Optimization usually splits into two parts: de-

sign and control

� Input-output focus restricts dynamical state

space

� Effort-flow pairs and energy analysis yield nat-

ural boundary variables
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