Energy, energy-flux, and control

Norbert E. Ligterink, Tomar, Portugal, 29-7-05

□ Control of distributed system: more design than control

□ Non-stationary dynamical systems (stability, convergence)

- □ Boundary conditions, input-output, partial integration
- \Box Iteration \rightarrow evolution-with-damping
- in collaboration with Arjan van der Schaft and Peter Breedveld

Once a system is "designed," control u is limited

$$u(x,t) = F_{\text{design}}(x) \quad u_{\text{control}}(t)$$

E.g., in reducing vibrations, design is: **traditional**: lighter and stiffer ($\omega \uparrow$) **control-based**: optimize input-to-output vibration is energy "lost" in the system

design control: position of the fixture. Dynamical control: time-dependence of the applied force. However, for every fixture independently

AN EXAMPLE

dim X = 800, dim DX = Y = 2209

3

Model reduction based on responses to ${\bf F}$ and $\ddot{{\bf F}}$

error in corner displacement of 2-dof model ~ 0.01

Cooling of a Plate, as fast as possible

Constant flow heat-exchanger $\Rightarrow \infty$ -long pipe since $\dot{Q} = C(T_{out} - T_{in})$ Control: geometry of the pipe

Optimal design: constant exchange rate per volume

Control pairs (boundary or distributed) effort \otimes flow = power

force \otimes displacement, voltage \otimes current, $\dot{u} \otimes \partial_{\nu} f$, and $\dot{f} \otimes \partial_{\nu} u$, etc. In partial integration (strong \leftrightarrow weak):

$$-\int u\Delta v \to \int \nabla u \cdot \nabla v - \underbrace{\int_{\partial} u\partial_{\nu} v}_{\text{canceled}}$$

boundary (divergence) terms are normally set to zero, but can be associated with boundary control. Energy flux S is a pair of input and output Given the Lagrangian $L(y, \dot{y})$, independent of t and x yields conserved energy E:

$$\dot{E} = \int \dot{H} - \int_{\partial} \mathbf{S} \cdot \mathbf{n}$$

the energy flux S can be decomposed in: effort e and flow f, naturally the effort being vector-like. (However, S = fe also possible.)

Generic differential equation in canonical pairs:

$$\begin{pmatrix} e_{\mathsf{micro}}(x) \\ f_{\mathsf{micro}}(x) \end{pmatrix} = \begin{pmatrix} 0 & \nabla \cdot \\ \nabla & 0 \end{pmatrix} \begin{pmatrix} e_{\mathsf{macro}}(x) \\ f_{\mathsf{macro}}(x) \end{pmatrix}$$

with the boundary variables $e_{\text{boundary}} = e_{\text{macro}}|_{\partial}$ and $f_{\text{boundary}} = f_{\text{macro}}|_{\partial}$. (1 input-1 output)

E.g. wave equation, diffusion equation, ···

Discretization on function space $X \otimes Y$ **:** X: macroscopic fields (0-forms) $\subset_d H^1$ $Y = \nabla X$ microscopic fields (1-forms) $\subset_d L^2$ **Energy conservation** requires: (state q(x)) \Box exact integration on $X \otimes Y$. \Box effective energies $\int dx H(q(x)) \rightarrow \Sigma V(q_h)$. \Box nonlinear: \ddot{q} -or- $\dot{q} = f_1(\nabla f_2(\nabla f_3(q, x), x), x)$. results with stable nonlinear wave-equations (coll. LAGEP, Lyon)

Two pairs of local function spaces

10

"Systems of Conservation Laws" (Lax) \rightarrow linear part

Nonlinear parts in energy storage and dissipation

11

pick the right damping R, and step size dt

keywords: Lyapunov, passitivity control

Conclusions

 Optimization usually splits into two parts: design and control
Input-output focus restricts dynamical state

space

□ Effort-flow pairs and energy analysis yield natural boundary variables