Enschede, 22 January 2004

Modern Physics: THE SYMMETRY PRINCIPLE

by

Norbert Ligterink

Control Engineering, University Twente

Modern Physics: the symmetry principle, 22-01-04, TW/UT/NL

Symmetries $\quad \Leftrightarrow \quad$ conserved quantities
Fields $\quad \Leftrightarrow$ momentum \approx derivatives

Wave equation $\quad \Leftrightarrow \quad$ relativity
Charge conservation $\Leftrightarrow \quad$ gauge principle
Symmetry breaking $\Leftrightarrow \quad$ buckling

The Lagrangian is independent of time:
$0=$ chain $\frac{d}{d t} \mathcal{L}-\frac{\partial \mathcal{L}}{\partial \mathbf{q}} \dot{\mathbf{q}}-\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}} \ddot{\mathbf{q}}=$ E.L. $\frac{d}{d t}\left(\dot{\mathrm{q}} \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}}-\mathcal{L}\right)=\frac{d}{d t} \mathcal{H}$
conservation of energy
where $\mathcal{H}=$ Hamiltonian, and Euler-Lagrange equations:

$$
0=\frac{\partial \mathcal{L}(\mathbf{q}, \dot{\mathbf{q}})}{\partial \mathbf{q}}-\frac{d}{d t} \frac{\partial \mathcal{L}(\mathbf{q}, \dot{\mathbf{q}})}{\partial \dot{\mathbf{q}}}
$$

If the Lagrangian is not a function of position q :

$$
\frac{d \partial \mathcal{L}}{d t} \partial \dot{\mathbf{q}}=0 \quad \Leftrightarrow \quad \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}}=\text { constant }=\mathrm{p}
$$

conservation of momentum

TWO-BODY (angular momentum, $\mathbf{q}_{i}, \mathbf{p}_{i} \in \mathbb{R}^{3}$)

$$
\mathcal{L}=\frac{m_{1} \dot{\mathbf{q}}_{1}^{2}}{2}+\frac{m_{2} \dot{\mathbf{q}}_{2}^{2}}{2}-V\left(\left|\mathbf{q}_{1}-\mathbf{q}_{2}\right|\right)
$$

translation of the whole system (position)

$$
0=\sum_{i} \frac{\partial \mathcal{L}}{\partial \mathbf{q}_{i}}=\frac{d}{d t} \sum_{i} \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}_{i}}=\frac{d}{d t}\left(\mathbf{p}_{1}+\mathbf{p}_{2}\right)
$$

rotation of the whole system (position and velocity)

$$
0=\sum_{i} \frac{\partial \mathcal{L}}{\partial \mathbf{q}_{i}} \cdot\left(\mathbf{q}_{i} \times \mathbf{n}\right)+\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}_{i}} \cdot\left(\dot{\mathbf{q}}_{i} \times \mathbf{n}\right)=\mathbf{n} \cdot \frac{d}{d t}\left(\mathbf{q} \times \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}_{i}}\right)
$$

Digression

The Poisson bracket $\{\cdot, \cdot\}$:

$$
\{f, g\}=\frac{\partial f}{\partial \mathbf{p}} \frac{\partial g}{\partial \mathbf{q}}-\frac{\partial g}{\partial \mathbf{p}} \frac{\partial f}{\partial \mathbf{q}}
$$

(such that: $\left\{p_{i}, q_{j}\right\}=\delta_{i j}$ and $\dot{g}=\{H, g\}$) led Dirac (1925) to a simple definition of Quantum Mechanics:
$\{f, g\} \rightarrow[F, G]=F G-G F \quad$ that satisfy $\quad\left[P_{i}, Q_{j}\right]=i \hbar \delta_{i j}$ every operator $F(P, Q), G(P, Q)$, and $P(Q)$ or $Q(P)$.

FIELDS: infinite number of degrees of freedom, \mathbf{q}

$$
\mathbf{q}_{i} \rightarrow \phi(\mathbf{q}, t) \quad \mathbf{p}_{i} \rightarrow \pi(\mathbf{q}, t)=\frac{\delta \mathcal{L}(\phi(\mathbf{q}), \dot{\phi}(\mathbf{q}))}{\delta \dot{\phi}(\mathbf{q})}
$$

momentum also as translational invariance:

$$
\phi(\mathbf{q}+\mathbf{a})=\phi(\mathbf{q})+\mathbf{a} \frac{\partial \phi(\mathbf{q})}{\partial \mathbf{q}}+\cdots
$$

second type of "momentum density" with $\partial_{\mu} P^{\mu}=0$:

$$
\mathbf{P}(\mathbf{q})=-\pi(\mathbf{q}) \frac{\partial \phi(\mathbf{q})}{\partial \mathbf{q}} \quad\{\mathbf{P}(\mathbf{q}), \phi(\mathbf{q})\}=\frac{\partial \phi(\mathbf{q})}{\partial \mathbf{q}}
$$

Important for spatial correlations.

From the spatial derivative it is immediately clear in which directions the fields "move"

Digression

Another type of variational principle:
On a domain Ω in $\mathbb{R} \otimes \mathbb{R}^{3}$ (space(1,2,3)-time(0)):

$$
\begin{gathered}
0=\nabla \frac{\delta \mathcal{L}}{\delta \nabla \phi}-\frac{\delta \mathcal{L}}{\delta \phi} \quad T_{\text {energy-momentum }}^{\mu \nu}=\partial_{\mu} \phi \frac{\delta \mathcal{L}}{\delta \partial_{\nu} \phi}-g^{\mu \nu} \mathcal{L} \\
\phi \text { fixed on } \partial \Omega .
\end{gathered}
$$

$$
\partial_{\mu} T^{\mu \nu}=0 \quad \text { and } \quad P^{\mu}=T^{\mu 0}
$$

Reduces for T^{00} to original Euler-Lagrange if:

$$
\Omega=\left\{t \in\left[t_{0}, t_{1}\right] \wedge \mathbf{q} \in \mathbb{R}^{3}\right\}
$$

electrostatic (Coulomb)

magnetic (Faraday)

$-d_{t} Q=\nabla \cdot J \quad$ (Continuity relation, charge conservation)
Maxwell combined it: electromagnetism wave-equation solutions, with invariant wave velocity

Gauge Fields A^{μ} are Tranverse Fields

(closed (but not exact since Bohm-Aharonov))

$$
\mathbf{B}_{\text {magn }}=\nabla \times \mathbf{A} \quad \text { and } \quad \mathbf{E}_{\text {elec }}=-\nabla A^{0}-\dot{\mathbf{A}}
$$

Hence invariant under $\mathbf{A} \rightarrow \mathbf{A}+\nabla \chi$ and $A^{0} \rightarrow A^{0}-\dot{\chi}$. four-vector $s=(c t, x, y, z)$, four-current $j=\left(c \rho, j_{x}, j_{y}, j_{z}\right)$:

$$
\begin{aligned}
\partial_{\mu} j^{\mu} & =0, \text { and }\left(\partial_{t}^{2}-\nabla^{2}\right) A^{\mu}=j^{\mu} . \\
A^{\mu}(s) & =\int d^{4} s^{\prime} \frac{j^{\mu}\left(s^{\prime}\right)}{\left|s^{\prime}-s\right|^{2}}+\text { gauge terms }
\end{aligned}
$$

Gauge principle: superfluous coordinates
Z (gauge coordinate)

Modern Physics: the symmetry principle, 22-01-04, TW/UT/NL

Coulomb gauge: faster than the speed of light

light-cone (causal region)

Continuity equation: charge conservation

$A^{\mu=0 \cdots 3}$, a four-vector (Relativistic)

* Fields $\phi \rightarrow\left(\phi_{1}, \phi_{2}\right) \quad$ (on a circle)
* Covariant derivative (Geometry):

$$
\frac{\partial}{\partial x^{\mu}} \rightarrow D_{\mu}=\frac{\partial}{\partial x^{\mu}}-e A_{\mu}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

$* \mathcal{L}_{\text {gauge }}=\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \quad$ where $\quad F_{\mu \nu}=\left[D_{\mu}, D_{\nu}\right]$

Digression

$$
\mathrm{D}_{\mu}=\frac{\partial}{\partial x^{\mu}}-e A_{\mu}^{a} T^{a} \equiv \frac{\partial}{\partial x^{\mu}}-e \mathrm{~A}_{\mu}
$$

where T^{a} are Lie-group generators.
For particles that "belong" together: $\phi_{1}, \phi_{2}, \cdots, \phi_{N}$, N-dimensional groups are used to postulate interactions.
\Rightarrow non-linear dynamics, self-interactions (a mess):

$$
\begin{gathered}
F_{\mu \nu}=\left[\mathrm{D}_{\mu}, \mathrm{D}_{\nu}\right]=\partial_{\mu} \mathrm{A}_{\nu}-\partial_{\nu} \mathrm{A}_{\mu}+T^{c} f_{\text {group }}^{c a b} A_{\nu}^{a} \cdot A_{\mu}^{b} \\
\text { Nature } \equiv U(1) \otimes S U(2) \otimes S U(3)+\text { gravity } .
\end{gathered}
$$

Eugene Wigner's legacy:

change of a system $\Rightarrow U$ where U unitary matrix : $U^{\dagger}=U^{-1}$
Conservation of probability: infinite state vector

$$
\begin{aligned}
& \qquad \psi \in H_{\text {Hilbert }} \text { over } \mathbb{C} \text { : } \\
& \qquad T_{\text {transform }}(\psi)=U \cdot \psi \\
& \text { such that }|\psi|^{2}=1 \\
& \text { unitarity matrices rules!! }
\end{aligned}
$$

BUCKLING = SYMMETRY BREAKING

$$
\begin{gathered}
L(\phi)=L(\phi+\delta \phi) \\
\text { Pick an angle } \phi_{0}
\end{gathered}
$$

(The symmetry breaking state)
No force associated with a change of

single state

free rotation modes

Pions, the free modes of nuclear physics particle triplet $\pi^{-}, \pi^{0}, \pi^{+}$, suprisingly light (139 MeV) particle doublet p (proton), n (neutron), both 938 Mev , where $p+\pi^{-} \rightarrow n$
$S U(2)_{\mathrm{spin}} \otimes S U(2)_{\mathrm{iso}} \approx S O(4) \rightarrow S O(3) \quad U(1)$ is broken
A 4-D sphere, with one axis fixed, is a 3-D sphere:

$$
\left(\pi^{-}, \pi^{0}, \pi^{+}\right)
$$

FINAL REMARKS

* The outside world: Sources, Sinks, and Schwinger
* Algebraic theories: spectra from group characters
* QCD (strongly interacting $\operatorname{SU(3)\text {)stillunsolved}}$
* Dominating experiments (particle physicists only know plane waves)

