PACDAS: Theoretical Developments

e Model Reduction ..... around operational states (lumped-)

e More variables, more freedom: what sets port-based apart

e Energy density and energy flux

e Splitting the equations: Interconnection



PACDAS: Practical Developments

e DTF; a Laplacian interconnection (in collaboration with Lyon)

e Stand-alone FEM code, reduction + conservation laws

e MEMS (published paper)

e Finite Element Electromagnetism

e Cooling = diffusion + flow



Model reduction, an operational perspective

separate rigid—body (operational) motion from deformation

higher order modes are the expansion in time—derivatives of F(t)
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A PICTURE OF MODES

[ ] lumped (rigid body) part
— first mode

-1 1
— second mode mode(i)= (K M) lumped mode
— third mode
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converging and alternating series




Constant angular velocity (frictionless)

angular velocity

rotation
axis

fixed

centrifugal force,
constant in body—frame




Constant torque under friction
(constant angular velocity)

angular velocity

rotation - F

axis friction force
fixed \_ constant in body—frame
torque

centrifugal force,
constant in body—frame




WHAT SETS PORT-BASED MODELING APART?

position out Traditional, static approaches:

Solve A and B in turn for the boundary
Configuration conditions given by solution on the

X = X .
A A% B other domain.

XX B
forcein — A\AN NN K

The force is a solution of —Kx=F, so one

could use Lagrange multipliers to solve
F+F=0 B

with force identification during iteration.
Newton

x fixed Iteration "'looks'" like dynamics, where the
type of iteration corresponds to a choice

of input (force or position).

K

Lanczos: (1950’s) momentum is already the Lagrange multiplier for v=x
[\\ //\v/\\//\\,— —  F for fixed x (or x for fixed F)
\% > iterations (or ''time'")




By retaining two sets of variables (the canonical pair),

the model does not have to depend on boundary conditions

X (V)
Traditional
X (V)
Port—based
p (F)

part of the research is finding efficient ways to handle the additional degrees of freedom




Variational approaches preserve properties in restricted subspaces.

Time-independent Lagrangian £ — Hamiltonian (FE is constant):

= q(z)
5q(2)
Conserved Hamiltonian — conserved power:

with E=/H

H+V-S=0  with = = d(z)o— (=" f(2)e(2)")

( )

or : H + S=0

/\/OLUI\/IE SURFACE
Still holds if: £(q1,92,93,---) — £(q1,92, - ,qn,0,0,0,---)



Distributed systems decompose into three parts

interconnection, conservation laws

DTF

linear

el - - distributed variables
boundary variables --1---

symplectic structure

physics
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Distributed system

#variables

#relations

distributed variables

Control

physical laws
energy storage
energy dissipation

boundary variables

nonlinear

simulation/experiment
in— and out—flow
boundary conditions

run—time

observability, controllability




THE SAME STRUCTURE (DTF) I/\\/ i

7= —1 z=1

z=1

N\
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e (2) e,z)

C?DTF:I C~—DTF —R
(2) r f(2)

z=—1

wave diffusion

Distributed elements I,C,R can
be nonlinear, and z—dependent:

C ~—DTF — Se:0

r C(Q@),V(2),2)
1(1(2),V(2),2)
R(I(2),V(2),2)

static




DTF:

<f1<z>):<o %)(ma). <e1|a>:<ei>
e2(2) 20 )\ f2(2) ) f2lo *

elasticity (elliptic), diffusion (parabolic), wave (hyperbolic) are all de-
scribed by the same structure.

z-ports: v;(f;(z),e;(2),z) = 0 (infinite (n) dimensional)
b-ports: x+(f*,et) =0 (boundary conditions)

Power relation (defines f*,e®):

[ 1) +ea(Dfa(z) = fret - fem



DISCRETIZATION

1

N+1
fZ(Z) - Z Ji (

N+1
el(z) D) V. «
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f(z)—%Qi 0i(@)
efz) —B= 20 B

functions — coefficients . modes

differentiation:

N X (N+1) matrix D :

power product:

N X (N+1) matrix Y:

Q=DJ

J'f(z) e(z) - QYV

power condition:
D'Y+YD =

—1

0

1

power—in

power—out




Conserving energy and "’ charge’” in discretization
e Compatibility 2 : space {f1} — space {f2}, ({e2} — {e1}).
e Effective Hamiltonian densities: (functions to modes ¢;)
v(a()) = Vi = [ PV Qi)
J
e Exact integration on space {fi1} ® {e1} and {fo} ® {eo}.

e Power relation, which defines boundary variables f*, e*:

[ 1A +ea(Dfalz) = et - ey



Different ''forms"

piece—wise linear

O—form f1e2
d_
1—form dz
.-
- .
f , €4

also for arbitrary order
polynomials

of discretization

d_ : compatibility criterion

dz

piece—wise cubic
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DTF code for Port-Hamiltonian systems
Version: 1.0 (testing), Date: 28-04-05
Author: Norbert E. Ligterink,

Control Engineering, University Twente, The Netherlands
Use as you please, no warranty, acknowledgements appreciated
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SUBROUTINE: DTF: to calculate the interconnection

EFFHAMILTONIAN: to generate the effective potentials

POWER: to calculate the corresponding powers
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Given the O0-forms JA(2*N+2) and VA(2*N+2), and one of each pair
(E1,Fl) and (E2,F2), DTF generates the 1-forms JB(2*¥N+l) and
VB(2*N+1) and the other of the pairs (E1,Fl) and (E2,F2)

#*
*
#*
#*
*

Four causality cases are distinguished:
CAUS1 = 0: E1 is given, CAUS1l = 1: Fl is given
CAUS2 0: E2 is given, CAUS2 1l: F2 is given

Note: depending on the causility CAUS1l: El1 or Fl overwrites VA(l)
or JA(l), and for CAUSZ: EZ2 or F2, overwrites VA(2*N+1l) or
JA(2*¥N+1).

The other values of E1 and F1, and E2 and F2, are returned by DTF.

Note: Given the (adjusted) values of JA and VA, the generated
values of JB and VB are such that the product satisfies the
power relation POWER(N,JA,VA,JB,VB) = E2*F2 - E1*Fl

VARIABLES: (type: REAL*8, unless stated otherwise)

IN: . .
N: (integer) number of segments. DEbllgglIlg and testing stage iy
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FEM CODE in progress

* Mesh format: displaying, generating

* Stiffness matrix: symmetric, invariant, fast (38xN)

* Solver/Mode generator (SYMMLQ, symmetric non—definite)
* Reduction Algorithm

* Connectors (ports)

* DTF style?
mixed
strains on
a square A
forward

Mesh displaying code (C—code):




ELECTROM AGNETISM (higher dimensions, more complex PDE’s)

E, Ee geometric Maxwell laws:

*lines of E,D,B, and H are closed

*rate of surface B = edge of E > invertible

*rate of surface D = edge of H

piece—wise constant permittivities

charge—and—current representation:




MEMS application (published)

electrostatic energy

movement versus
v(clamp) - elastic energy
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COOLING A MOULD

constant incompressible flow

heat exchange
heat capacitance

diffusion equation

400x400
simulations

Ax=v At




CONCLUSIONS AND OUTLOOK

* Model Reduction, mode shapes, operational states=lumped model
* (General principles, variational, discretization, #variables=#relations
* FEM in progress

* DTF in progress

* Heat+flow+deformation problems

* Higher—order PDE’s (e.g., bending+stretch)

* MEMS (electrostatics+elasticity)

* FEM Electromagnetism

* Model problems? Model Problems? Model Problems?




