
PACDAS: Theoretical Developments

• Model Reduction ..... around operational states (lumped+)

• More variables, more freedom: what sets port-based apart

• Energy density and energy flux

• Splitting the equations: Interconnection



PACDAS: Practical Developments

• DTF; a Laplacian interconnection (in collaboration with Lyon)

• Stand-alone FEM code, reduction + conservation laws

• MEMS (published paper)

• Finite Element Electromagnetism

• Cooling = diffusion + flow
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Model reduction, an operational perspective

separate rigid−body (operational) motion from deformation

constant force

acceleration

static deformation

rigid−body

higher order modes are the expansion in time−derivatives of  F(t)

M



A PICTURE OF MODES
lumped (rigid body) part
first mode
second mode
third mode

mode(i)= (K
−1

M)
i

F

converging and alternating series

lumped mode



Constant angular velocity (frictionless)

fixed F

rotation
axis

centrifugal force,
constant in body−frame

angular velocity



Constant torque under friction 
(constant angular velocity)

friction force
constant in body−framefixed

torque
F

Frotation
axis

angular velocity

centrifugal force,
constant in body−frame



v = x. F=p
.

A

B

Traditional, static approaches:

other domain.
conditions given by solution on the

Newton

Configuration

of input (force or position).

Iteration "looks" like dynamics, where the

Lanczos: (1950’s) momentum is already the Lagrange multiplier for

type of iteration corresponds to a choice

Solve A and B in turn for the boundary

The force is a solution of −Kx=F, so one
could use Lagrange multipliers to solve
with force identification during iteration.

WHAT SETS PORT−BASED MODELING APART?

iterations (or "time")

F for fixed x (or x for fixed F)

x = xA B
x = xA B

F + F = 0 

force in

x fixed

position out

BA



p (F)

x (v)

x (v)

the model does not have to depend on boundary conditions

Traditional

Port−based

By retaining two sets of variables (the canonical pair),

part of the research is finding efficient ways to handle the additional degrees of freedom



Variational approaches preserve properties in restricted subspaces.

Time-independent Lagrangian L → Hamiltonian (E is constant):

H = q̇(z)
δL

δq̇(z)
− L with E =

∫
H

Conserved Hamiltonian → conserved power:

Ḣ+∇ · S = 0 with Si = q̇(z)
δL

δ∂iq(z)
(= ”f(z)e(z)”)

or :
∫
VOLUME

Ḣ+
∫
SURFACE

S = 0

Still holds if: L(q1, q2, q3, · · · ) → L(q1, q2, · · · , qn,0,0,0, · · · )



DTF
distributed variables
boundary variables
distributed variables
boundary variables

Distributed system

conservation laws
symplectic structure

distributed variables

energy dissipation
energy storage
physical laws

Control

boundary variables

boundary conditions

simulation/experiment
in− and out−flow

interconnection, conservation laws

physics run−time

nonlinear 

linear

Distributed systems decompose into three parts

observability, controllability

#relations

#variables
=



1e (z)
DTF

DTF

DTFC C R
−

f (z) f (z)2

e (z)2
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z=1

z=−1

THE SAME STRUCTURE (DTF)

I

diffusionwave

static

be nonlinear, and z−dependent:

C(Q(z),V(z),z) 

I(I(z),V(z),z) 
R(I(z),V(z),z) 

.

Distributed elements I,C,R can

C Se:0

z=1z= −1



DTF:(
f1(z)
e2(z)

)
=

(
0 ∂

∂z
∂
∂z 0

)(
e1(z)
f2(z)

)
;

(
e1|∂
f2|∂

)
=

(
e±

f±

)
elasticity (elliptic), diffusion (parabolic), wave (hyperbolic) are all de-

scribed by the same structure.

z-ports: χi(fi(z), ei(z), z) = 0 (infinite (n) dimensional)

b-ports: χ±(f±, e±) = 0 (boundary conditions)

Power relation (defines f±, e±):∫
e1(z)f1(z) + e2(z)f2(z) = f+e+ − f−e−



φi iΣ
i

(z) φi iΣ
i

(z)

φi iΣ
i

(z)

functions coefficients . modes

N (N+1) matrix D Q = D J
.

:

f(z) e(z) 

DISCRETIZATION

J

iΣ
i

(z)φ iV

f (z) 
N

N

N+1

N+1

differentiation:

power product:

D YT + Y D =T
−1

1
0

power−in

power−out

N (N+1) matrix Y: Q YVT

power condition:

e (z) 

f (z) 

1

2

e (z) 
1

2

.
Q

λ

.



Conserving energy and ”charge” in discretization

• Compatibility ∂
∂z : space {f1} → space {f2}, ({e2} → {e1}).

• Effective Hamiltonian densities: (functions to modes φi)

v(q(z)) → Vi =
∫

Pi(z)V (
∑
j

Qjφj(z))

• Exact integration on space {f1} ⊗ {e1} and {f2} ⊗ {e2}.

• Power relation, which defines boundary variables f±, e±:∫
e1(z)f1(z) + e2(z)f2(z) = e+f+ − e−f−



g g’

g g’

0−form

1−form

f 0

0−form

1−form

f −

f +

+ +

− −

dz
d

f e
1 2

f e
2 1

e 1

e 2

dz
d

dz
d

piece−wise linear piece−wise cubic

f 2

f1

polynomials 
also for arbitrary order

: compatibility criterion

Different "forms" of discretization



DTF CODE 

Calculates:
DTF
Hamiltonian
Power

Debugging and testing stage



mixed

forward

backward

mixed

a square
strains on

* Mesh format: displaying, generating

* Stiffness matrix: symmetric, invariant, fast (38xN)

Mesh displaying code (C−code): 

FEM CODE in progress

* Solver/Mode generator (SYMMLQ, symmetric non−definite)

* Reduction Algorithm 

* Connectors (ports)

* DTF style?
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J J J = 0

aQ
Qc

Q b
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Ea Ec

Ea

Eb

Ec

Eb+ + = 0

geometric Maxwell laws:
*lines of E,D,B, and H are closed
*rate of surface B = edge of E
*rate of surface D = edge of H

ELECTROMAGNETISM

invertible

charge−and−current representation:

piece−wise constant permittivities

(higher dimensions, more complex PDE’s)



electrostatic energy

elastic energy
versus

MEMS application (published)

movement
v(clamp)

clamp force
bending force

V=0
v=0V

a step as the
result of a
full cycle, including
a clamped state:

muSPAM data



400x400
simulations

diffusion equation

x = v t

COOLING A MOULD

heat capacitance

constant incompressible flow
heat exchange



* FEM Electromagnetism

* Heat+flow+deformation problems

* MEMS (electrostatics+elasticity)

* Higher−order PDE’s (e.g., bending+stretch)

* Model problems? Model Problems? Model Problems? 

* DTF in progress

* FEM in progress

* General principles, variational, discretization, #variables=#relations

CONCLUSIONS AND OUTLOOK

* Model Reduction, mode shapes, operational states=lumped model 


