PACDAS: Theoretical Developments

- Model Reduction around operational states (lumped+)
- More variables, more freedom: what sets port-based apart
- Energy density and energy flux
- Splitting the equations: Interconnection

PACDAS: Practical Developments

- DTF; a Laplacian interconnection (in collaboration with Lyon)
- Stand-alone FEM code, reduction + conservation laws
- MEMS (published paper)
- Finite Element Electromagnetism
- Cooling $=$ diffusion + flow

Model reduction, an operational perspective

separate rigid-body (operational) motion from deformation
higher order modes are the expansion in time-derivatives of $F(t)$
constant force

A PICTURE OF MODES

\square lumped (rigid body) part first mode second mode $\operatorname{mode}(\mathbf{i})=\left(\mathbf{K}^{-1} \mathbf{M}\right)$ lumped mode third mode

converging and alternating series

Constant angular velocity (frictionless)

Constant torque under friction

(constant angular velocity)

WHAT SETS PORT-BASED MODELING APART?

position out

Traditional, static approaches:
Solve A and B in turn for the boundary conditions given by solution on the other domain.

The force is a solution of $-K x=F$, so one could use Lagrange multipliers to solve with force identification during iteration.

Iteration "looks" like dynamics, where the type of iteration corresponds to a choice of input (force or position).

Lanczos: (1950's) momentum is already the Lagrange multiplier for $\mathbf{v}=\dot{\mathbf{x}}$ $\mathbf{F}=\dot{\mathbf{p}}$
 F for fixed \mathbf{x} (or \mathbf{x} for fixed F)
iterations (or 'time"')

By retaining two sets of variables (the canonical pair), the model does not have to depend on boundary conditions

part of the research is finding efficient ways to handle the additional degrees of freedom

Variational approaches preserve properties in restricted subspaces.

Time-independent Lagrangian $\mathcal{L} \rightarrow$ Hamiltonian (E is constant):

$$
\mathcal{H}=\dot{q}(z) \frac{\delta \mathcal{L}}{\delta \dot{q}(z)}-\mathcal{L} \quad \text { with } \quad E=\int \mathcal{H}
$$

Conserved Hamiltonian \rightarrow conserved power:

$$
\begin{gathered}
\dot{\mathcal{H}}+\nabla \cdot \mathrm{S}=0 \quad \text { with } \quad S^{i}=\dot{q}(z) \frac{\delta \mathcal{L}}{\delta \partial_{i} q(z)}\left(=" f(z) \mathbf{e}(z)^{\prime \prime}\right) \\
\text { or: } \int_{\text {VOLUME }} \dot{\mathcal{H}}+\int_{\text {SURFACE }} \mathrm{S}=0 \\
\text { Still holds if: } \mathcal{L}\left(q_{1}, q_{2}, q_{3}, \cdots\right) \rightarrow \mathcal{L}\left(q_{1}, q_{2}, \cdots, q_{n}, 0,0,0, \cdots\right)
\end{gathered}
$$

Distributed systems decompose into three parts

interconnection,
physics

| DTF |
| :--- | :--- |
| Distributed system |
| distributed variables |
| physical laws |
| energy storage |
| energy dissipation |

\#variables
=
\#relations
$=$
\#relations

Distributed system
distributed variables
physical laws energy storage energy dissipation
linear
run-time
Control
boundary variables
simulation/experiment in- and out-flow boundary conditions
observability, controllability

THE SAME STRUCTURE (DTF)

wave

diffusion

Distributed elements I,C,R can be nonlinear, and z -dependent:

$$
\begin{aligned}
& \mathbf{C}(\mathbf{Q}(\mathbf{z}), \mathbf{V}(\mathbf{z}), \mathbf{z}) \\
& \mathbf{I}(\mathbf{I}(\mathbf{z}), \mathbf{V}(\mathbf{z}), \mathbf{z}) \\
& \mathbf{R}(\mathbf{I}(\mathbf{z}), \mathbf{V}(\mathbf{z}), \mathbf{z})
\end{aligned}
$$

DTF:

$$
\binom{f_{1}(z)}{e_{2}(z)}=\left(\begin{array}{cc}
0 & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial z} & 0
\end{array}\right)\binom{e_{1}(z)}{f_{2}(z)} ; \quad\binom{\left.e_{1}\right|_{\partial}}{\left.f_{2}\right|_{\partial}}=\binom{e^{ \pm}}{f^{ \pm}}
$$

elasticity (elliptic), diffusion (parabolic), wave (hyperbolic) are all described by the same structure.
z-ports: $\chi_{i}\left(f_{i}(z), e_{i}(z), z\right)=0$ (infinite (n) dimensional)
b-ports: $\chi_{ \pm}\left(f^{ \pm}, e^{ \pm}\right)=0$ (boundary conditions)
Power relation (defines $f^{ \pm}, e^{ \pm}$):

$$
\int e_{1}(z) f_{1}(z)+e_{2}(z) f_{2}(z)=f^{+} e^{+}-f^{-} e^{-}
$$

DISCRETIZATION

functions coefficients . modes
differentiation:

$\mathrm{N} \times(\mathrm{N}+1)$ matrix $\mathbf{D}:$
 $\dot{\mathbf{Q}}=\mathbf{D} \mathbf{J}$

power product:
$\mathbf{N} \times(\mathbf{N}+1)$ matrix \mathbf{Y} :
$\int \mathbf{f}(\mathbf{z}) \mathbf{e}(\mathbf{z}) \rightarrow \dot{\mathbf{Q}}^{\mathbf{T}} \mathbf{Y} \mathbf{V}$
power condition:

$$
\mathbf{D}^{T} \mathbf{Y}+\mathbf{Y}^{T} \mathbf{D}=
$$

$\left[\begin{array}{ccc}-1 & & \\ & 0 & \\ & & 1\end{array}\right] \quad$ power-in \quad power-out

Conserving energy and "charge" in discretization

- Compatibility $\frac{\partial}{\partial z}:$ space $\left\{f_{1}\right\} \rightarrow$ space $\left\{f_{2}\right\},\left(\left\{e_{2}\right\} \rightarrow\left\{e_{1}\right\}\right)$.
- Effective Hamiltonian densities: (functions to modes ϕ_{i})

$$
v(q(z)) \rightarrow V_{i}=\int P_{i}(z) V\left(\sum_{j} Q_{j} \phi_{j}(z)\right)
$$

- Exact integration on space $\left\{f_{1}\right\} \otimes\left\{e_{1}\right\}$ and $\left\{f_{2}\right\} \otimes\left\{e_{2}\right\}$.
- Power relation, which defines boundary variables $f^{ \pm}, e^{ \pm}$:

$$
\int e_{1}(z) f_{1}(z)+e_{2}(z) f_{2}(z)=e^{+} f^{+}-e^{-} f^{-}
$$

Different "forms" of discretization

$$
\frac{d}{d z}: \text { compatibility criterion }
$$

piece-wise linear

also for arbitrary order polynomials
piece-wise cubic

Author: Norbert E. Ligterink,
Control Engineering, University Twente, The Netherlands
Use as you please, no warranty, acknowledgements appreciated

SUBROUTINE: DTF: to calculate the interconnection EFFHAMILTONIAN: to generate the effective potentials POWER: to calculate the corresponding powers
***** **
****DTF****
Given the 0 -forms $J A(2 * N+2)$ and $V A(2 * N+2)$, and one of each pair (E1,F1) and (E2,F2), DTF generates the 1-forms JB(2*N+1) and $\mathrm{VB}\left(2^{*} \mathrm{~N}+1\right)$ and the other of the pairs (E1,F1) and (E2,F2)

Four causality cases are distinguished:
CAUS1 = 0: E1 is given, CAUS1 = 1: F1 is given
CAUS2 = 0: E2 is given, CAUS2 = 1: F2 is given
Note: depending on the causility CAUS1: E1 or F1 overwrites VA(1) or JA(1), and for CAUS2: E2 or F2, overwrites VA(2*N+1) or JA(2*N+1).
The other values of E1 and F1, and E2 and F2, are returned by DTF.
Note: Given the (adjusted) values of JA and VA, the generated values of JB and VB are such that the product satisfies the power relation $\operatorname{POWER}(\mathrm{N}, \mathrm{JA}, \mathrm{VA}, \mathrm{JB}, \mathrm{VB})=\mathrm{E} 2 * \mathrm{~F} 2-\mathrm{E}$ *F1

VARIABLES: (type: REAL*8, unless stated otherwise)

IN:
$\mathrm{N}:$
(integer) number of segments.

FEM CODE in progress

* Mesh format: displaying, generating
* Stiffness matrix: symmetric, invariant, fast (38xN)
* Solver/Mode generator (SYMMLQ, symmetric non-definite)
* Reduction Algorithm
* Connectors (ports)
* DTF style?

Mesh displaying code (C-code):

$$
\mathbf{E}_{\mathbf{a}}+\mathbf{E}_{\mathbf{b}}+\mathbf{E}_{\mathbf{c}}=\mathbf{0}
$$

$$
\begin{gathered}
Q_{b} \\
Q_{a}+Q_{b}+Q_{c}=0
\end{gathered}
$$

$\mathbf{E}_{\mathbf{c}}$ geometric Maxwell laws:
*lines of $\mathrm{E}, \mathrm{D}, \mathrm{B}$, and H are closed
*rate of surface $B=$ edge of E
*rate of surface $D=$ edge of \mathbf{H}
piece-wise constant permittivities
charge-and-current representation:

MEMS application (published)

COOLING A MOULD

constant incompressible flow heat exchange
heat capacitance
diffusion equation

CONCLUSIONS AND OUTLOOK

* Model Reduction, mode shapes, operational states=lumped model
* General principles, variational, discretization, \#variables=\#relations
* FEM in progress
* DTF in progress
* Heat+flow+deformation problems
* Higher-order PDE's (e.g., bending+stretch)
* MEMS (electrostatics+elasticity)
* FEM Electromagnetism
* Model problems? Model Problems? Model Problems?

