FUNCTIONAL SYSTEM DYNAMICS

Norbert E. Ligterink, CE/UT, 12-7-05

- $\hfill\square$ Operators and functionals
- \Box The limit to infinity
- □ Adding, removing, and replacing equations
- □ Boundary conditions, input-output
- □ More dimensions, Gauss, Green, and Stokes

STATEMENT OF THE PROBLEM

seeking useful knowledge of the infinite world

 \Box The "index" $z \in \mathbb{R}$ of the degrees of freedom x(z) is a mathematical point: unmeasurable.

 \Box Without "differential operator" $\frac{\partial}{\partial z}$ a continuous model is just a collection of models x(z) : $\dot{x}(z) = A(x(z))$

□ The differential operator introduces **ordering**, in the sense of *collective motion*, *correlation length* or *wave length*

$$egin{aligned} z &
ightarrow \{z_0, z_1, \cdots, z_n\} \ &rac{\partial}{\partial z}
ightarrow D:? \ &\int f(z) W(z) dz
ightarrow \sum\limits_i w_i f(z_i) \ &e(z) f(z)
ightarrow e(z_i) f(z_i)
ightarrow \sum\limits_{i,j} e(z_i) V_{ij} f(z_j) \end{aligned}$$

is only a restricted map of **functions** $\in C^0(\mathbb{R}) \rightarrow$ **vectors** $\in l_2$.

differential operator D (domain and range)

 \Box D is a linear, unbounded operator (e.g: $f(z) = z^{-0.3}$)

 \Box *iD* is only formally self-adjoint (even for the right, Liouville, boundary conditions)

 \Box Ker[D] is non-trivial (dependent on both function-space and topology)

 \Box D needs to be defined (a space X of sampling points,

yields an abstract Y = DX)

Two pairs of local function spaces

8

□ Green function expansion K^n *"transfer function"* K(x,y) : $\times \bullet \longrightarrow \bullet y$

Framework of function spaces, **functionals**:

$$\int e(f(z))f(z)w(z)dz \to J[f(z)]$$

with their (useful) linear operators:

$$\lim_{\epsilon \to 0} \frac{J[f(z) + \epsilon u(z)] - J[f(z)]}{\epsilon} = J'[f(z)]u(z)$$

and variational principles: (min J[u])

$$\delta J[u] = \delta \int (\nabla u)^2 + u^2 = 0 \quad \Leftrightarrow \quad \nabla^2 u = u$$

10

holonomic **CONSTRAINTS** *as restricted function spaces*

Neumann boundaries unrestricted (natural)

Dynamics is trivial

Dirichlet boundaries *restricted*

Lagrange multipliers $\lambda(z)$ allows one the add or replace functions in the functional

$$J[u] \to J[u] + \lambda(z)G[u,v]$$

where G[u, v] = 0 is some constraint, or defines implicitly the functions v.

Lagrangian and Hamiltonian are special functionals associated with dynamics.

Lagrangian functional L[u] with input force F

$$L[u] = \int \mathcal{L}(u, \dot{u}) + uF$$

The **Hamiltonian** arises from the elimination of velocity v, as an independent variable:

$$H[u, p] = p\dot{u} - L[u, \dot{u}]$$

where $p = \delta_{\dot{u}}L$ is the Lagrange multiplier of subsidiary condition $\dot{u} - v$. time dependence: D'Alembert principle of the extremum of the action integral S[u]:

$$S[u] = \int_{t_0}^{t_1} dt L[u]$$

time-evolution of u(t) is given by:

$$\delta S[u] = 0$$

More than one extremum might exists!

Removing functions $X \to X'$

The adiabatic, or instantaneous, approximation. Elasticity without inertia $M[\dot{u}] = 0$ follows the minimal energy W[u] solution:

$$X' = \{ u \in X \mid \delta W[u] = 0 \text{ and } M[\dot{u}] = 0 \}$$

a massless spring will have homogeneous stress (the problem will disappear when input-output systems; automatic function selection) Typical quadratic potential terms in the $(z \in \mathbb{R}^1)$ Lagrangian and Hamiltonian are (string, beam):

$$\left(\frac{\partial \phi}{\partial z} \right)^2 \to \phi^* D^* D \phi$$
(1)
$$\left(\frac{\partial^2 \phi}{\partial z^2} \right)^2 \to \phi^* D^* \overline{D}^* \overline{D} D \phi$$
(2)

spaces: $D: X \to Y$ and $\overline{D}: Y \to Z$. In nonlinear case: $\phi^* D^* D \phi \to f(\phi^*) D^* \Omega D \phi$. Sobolev type (co)energy: $E \approx \|\dot{u}\|_X + \|Du\|_Y$.

BOUNDARY CONDITIONS, INPUT-OUTPUT

questions of Functional System Dynamics

- $\hfill\square$ To reduce the function-space of internal dynamics
- \Box To choose the proper variables
- □ To relate global and microscopic properties
- □ To generate conservation-law interconnection structures

ELASTICITY internal *stress-strain* external *force-displacement*

Rotation: displacement $u_i \rightarrow$ but no strain ε_{ij}

Inserting the relation between strain and displacement: $J[\varepsilon] \rightarrow J[\varepsilon] - \sigma_{ij}(\varepsilon_{ij} - \partial_i u_j - \partial_j u_i)$

However, $\nabla \times \mathbf{u} = 0$ would correspond to independence of χ in $\sigma \to \sigma + *\nabla \chi$ (problems!).

dim X = 800, dim Y = 2209

Variables for internal and external use

Boundary polynomials

already incorporated in wave/diffusion dynamics code (Lyon collab.)

EXACT INTEGRATION ON $X \otimes Y$

The *exact* integral, in the sense of D^{-1} :

$$\int \psi_i(z) \phi_j(z) dz \rightarrow V_{ij}$$

with $(V : X \rightarrow Y)$, yields the power relation rate-of-change = inflow - outflow:

$$D^*V + V^*D = \delta_{++} - \delta_{--}$$

dim $X = \dim Y + 1$ for any n and any number of segments ²²

MORE DIMENSIONS, MORE D's $(\nabla, \nabla \times, \nabla)$

6 faces, 12 edges, 8 nodes

 $\int \nabla \cdot E = E(\text{faces})$ $\oint \nabla \times B = J(\text{edges})$ $\int E = E(\text{volume})$ $\dot{Q} = \nabla \cdot J \Rightarrow \Sigma J(\text{edges}) = \dot{Q}(\text{node})$

3 faces, 6 edges, 4 nodes

exact (invertible) relations between integral quantities

WISH LIST

- □ A collection of $\{X, Y\}$'s for several *D* operators □ Also on curved spaces $z \in \mathcal{M}$, possibly in polynomial approximations $(z(s) = a + bs + cs^2)$
- \Box Positivity criteria for D^*D operators (Hodge? Rham?)
- $\hfill\square$ Systematic added, removing, and replacing equations
- \Box Polynomial approximations of nonlinear e(f) and f(e)
- □ Automation, software implementation