FUNCTIONAL SYSTEM DYNAMICS

Norbert E. Ligterink, CE/UT, 12-7-05
\square Operators and functionals
\square The limit to infinity
\square Adding, removing, and replacing equations
\square Boundary conditions, input-output
\square More dimensions, Gauss, Green, and Stokes

STATEMENT OF THE PROBLEM

seeking useful knowledge of the infinite world

TOPOLOGY or DISTANCE

\square The "index" $z \in \mathbb{R}$ of the degrees of freedom $x(z)$ is a mathematical point: unmeasurable.
\square Without "differential operator" $\frac{\partial}{\partial z}$ a continuous model is just a collection of models $x(z): \dot{x}(z)=A(x(z))$
\square The differential operator introduces ordering, in the sense of collective motion, correlation length or wave length

DISPERSION is ordering

ABSCISSAS or SAMPLING

$$
\begin{aligned}
z & \rightarrow\left\{z_{0}, z_{1}, \cdots, z_{n}\right\} \\
\frac{\partial}{\partial z} & \rightarrow D: ? \\
\int f(z) W(z) d z & \rightarrow \sum_{i} w_{i} f\left(z_{i}\right) \\
e(z) f(z) & \rightarrow e\left(z_{i}\right) f\left(z_{i}\right) \rightarrow \sum_{i, j} e\left(z_{i}\right) V_{i j} f\left(z_{j}\right)
\end{aligned}
$$

is only a restricted map of functions $\in C^{0}(\mathbb{R}) \rightarrow$ vectors $\in l_{2}$.

differential operator D (domain and range)

$\square D$ is a linear, unbounded operator (e.g: $f(z)=z^{-0.3}$)
$\square i D$ is only formally self-adjoint (even for the right, Liouville, boundary conditions)
$\square \operatorname{Ker}[D]$ is non-trivial (dependent on both function-space and topology) O
$\square D$ needs to be defined (a space X of sampling points, yields an abstract $Y=D X$)

FUNCTIONS or MODES

$$
f(z) \rightarrow \sum_{i} f_{i} \phi_{i}(z)=\mathbf{f}^{T} \phi
$$

$$
\frac{\partial}{\partial z} \rightarrow \partial_{z} \phi_{i}=\psi_{i} \rightarrow D: X \rightarrow Y
$$

$$
\int f(z) W(z) d z \rightarrow \mathbf{f}^{T} \mathbf{w}
$$

$$
e(z) f(z) \rightarrow \int e(z) f(z) d z \rightarrow \mathbf{e}^{T} \mathbf{V f}
$$

piece-wise
$\phi(z)=a z+b$
piece-wise
$\psi(z)=a$

Two pairs of local function spaces
piece-wise
$\phi=a z^{2}+b z+c \quad \psi=2 a z+b$

THE POSSIBLE LIMITS TO ∞ :
\square FEM \#\#\# \rightarrow \#\#
\square Nuclear ordering modes

\square Green function expansion K^{n} "transfer function" $K(x, y): \times \bullet \bullet$ y

Framework of function spaces, functionals:

$$
\int e(f(z)) f(z) w(z) d z \rightarrow J[f(z)]
$$

with their (useful) linear operators:

$$
\lim _{\epsilon \rightarrow 0} \frac{J[f(z)+\epsilon u(z)]-J[f(z)]}{\epsilon}=J^{\prime}[f(z)] u(z)
$$

and variational principles: (min $J[u]$)

$$
\delta J[u]=\delta \int(\nabla u)^{2}+u^{2}=0 \quad \Leftrightarrow \quad \nabla^{2} u=u
$$

holonomic CONSTRAINTS

 as restricted function spaces

Neumann boundaries unrestricted (natural)

Dynamics is trivial

Dirichlet boundaries restricted

Lagrange multipliers $\lambda(z)$ allows one the add or replace functions in the functional

$$
J[u] \rightarrow J[u]+\lambda(z) G[u, v]
$$

where $G[u, v]=0$ is some constraint, or defines implicitly the functions v.

Lagrangian and Hamiltonian are special functionals associated with dynamics.

Lagrangian functional $L[u$] with input force F

$$
L[u]=\int \mathcal{L}(u, \dot{u})+u F
$$

The Hamiltonian arises from the elimination of velocity v, as an independent variable:

$$
H[u, p]=p \dot{u}-L[u, \dot{u}]
$$

where $p=\delta_{\dot{u}} L$ is the Lagrange multiplier of subsidiary condition $\dot{u}-v$.
time dependence: D'Alembert principle of the extremum of the action integral $S[u]$:

$$
S[u]=\int_{t_{0}}^{t_{1}} d t L[u]
$$

time-evolution of $u(t)$ is given by:

$$
\delta S[u]=0
$$

More than one extremum might exists!

Removing functions $X \rightarrow X^{\prime}$

The adiabatic, or instantaneous, approximation. Elasticity without inertia $M[i]=0$ follows the minimal energy $W[u]$ solution:

$$
X^{\prime}=\{u \in X \mid \delta W[u]=0 \text { and } M[\dot{u}]=0\}
$$

a massless spring will have homogeneous stress
(the problem will disappear when input-output systems; automatic function selection)

Typical quadratic potential terms in the $\left(z \in \mathbb{R}^{1}\right)$ Lagrangian and Hamiltonian are (string, beam):

$$
\begin{align*}
\left(\frac{\partial \phi}{\partial z}\right)^{2} & \rightarrow \phi^{*} D^{*} D \phi \tag{1}\\
\left(\frac{\partial^{2} \phi}{\partial z^{2}}\right)^{2} & \rightarrow \phi^{*} D^{*} \bar{D}^{*} \bar{D} D \phi \tag{2}
\end{align*}
$$

spaces: $D: X \rightarrow Y$ and $\bar{D}: Y \rightarrow Z$. In nonlinear case: $\phi^{*} D^{*} D \phi \rightarrow f\left(\phi^{*}\right) D^{*} \Omega D \phi$. Sobolev type (co)energy: $E \approx\|\dot{u}\|_{X}+\|D u\|_{Y}$.

BOUNDARY CONDITIONS, INPUT-OUTPUT

questions of Functional System Dynamics

\square To reduce the function-space of internal dynamics
\square To choose the proper variables
\square To relate global and microscopic properties
\square To generate conservation-law interconnection structures

ELASTICITY internal stress-strain external force-displacement

Rotation: displacement u_{i} \rightarrow but no strain $\varepsilon_{i j}$

Inserting the relation between strain and displacement: $J[\varepsilon] \rightarrow J[\varepsilon]-\sigma_{i j}\left(\varepsilon_{i j}-\partial_{i} u_{j}-\partial_{j} u_{i}\right)$

However, $\nabla \times \mathbf{u}=0$ would correspond to independence of χ in $\sigma \rightarrow \sigma+* \nabla \chi$ (problems!).

AN EXAMPLE

$$
\operatorname{dim} X=800, \operatorname{dim} Y=2209
$$

Variables for internal and external use

Boundary polynomials

already incorporated in wave/diffusion dynamics code (Lyon collab.)

EXACT INTEGRATION ON $X \otimes Y$

The exact integral, in the sense of D^{-1} :

$$
\int \psi_{i}(z) \phi_{j}(z) d z \rightarrow V_{i j}
$$

with ($V: X \rightarrow Y$), yields the power relation rate-of-change $=$ inflow - outflow:

$$
D^{*} V+V^{*} D=\delta_{++}-\delta_{--}
$$

$\operatorname{dim} X=\operatorname{dim} Y+1$
for any n and any number of segments

MORE DIMENSIONS, MORE D 's $(\nabla, \nabla \times, \nabla \cdot)$

6 faces, 12 edges, 8 nodes

$$
\begin{array}{ll}
\int \nabla \cdot E=E \text { (faces) } & \begin{array}{l}
\text { exact (inve } \\
\text { relations } b \\
\text { integral qu }
\end{array} \\
£ \nabla \times B=J \text { (edges) } \\
\int E=E(\text { volume } & \\
\dot{Q}=\nabla \cdot J \Rightarrow \Sigma J \text { (edges) }=\dot{Q} \text { (node) }
\end{array}
$$

WISH LIST

\square A collection of $\{X, Y$ \}'s for several D operators
\square Also on curved spaces $z \in \mathcal{M}$, possibly in polynomial approximations ($z(s)=a+b s+c s^{2}$)
\square Positivity criteria for $D^{*} D$ operators (Hodge? Rham?)
\square Systematic added, removing, and replacing equations
\square Polynomial approximations of nonlinear $e(f)$ and $f(e)$
\square Automation, software implementation

