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Abstract

Competent modeling of an electroelastic beam configuration is of major importance
for MEMS. The MEMS motor, based on such a deformable capacitor, is driven by
a voltage source. A coherent model, of limited complexity and expressed in design
parameters, is derived for a step motor. The two physical regimes; the stick and
non-stick, are matched, such that a smooth, single energy profile arises. The pull-
in voltage, the hysteris loop, jump-back voltage, the step size, and the dissipated
energies are determined as function of these design parameters. The results are
compared to measurements with the µWalker.
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1 Introduction

A well-known effect when modeling and designing MEMS (Micro Electrome-
chanical Systems) is that the electrostatic forces scale favorably with decreas-
ing size [1]. At the micrometer scale, an applied voltage in a range up to 100V
yields electrostatical forces comparable to the mechanical stiffness of the micro
structure. This feature lies at the heart of an effective actuator, in our case
an elastic beam with capacitance. The working principle of the elastic beam
relies on a balance between electrostatic and mechanical forces. Step motors
based on this principle, like the µWalker [2], are being developed for mass
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Fig. 1. One dimensional version of the µWalker used for modeling and simulation.

storage systems such as the µSPAM [3] and the Millipede [4]. As a result of
electrostatic forces from an applied voltage difference, very fine and powerful
steps are obtained. For the µWalker, the step size is a few tens of nm in size
and by applying a high frequency of the walking cycle, velocities up to several
mm/s are achievable with an accuracy in the order of 0.5nm per step. Figure 1
shows one realization of this micro device.

The characteristics of the beam greatly influence the properties of this device.
For every applied voltage a static deformation exists. However, the correspond-
ing dynamics is singular as above a critical pull-in voltage, the beam bending
forces cannot compensate for the electrostatic forces and the beam will hit
the underlying surface and stick there. Once the beam touches the ground
plate, an area of contact is the result of a second and final balance between
electrostatic and mechanical forces. A number of elaborate and detailed nu-
merical investigations have been dedicated to this and similar systems. The
cusp singularity [5] further complicates the analysis. We are not interested
in the precise dynamics, and treat the system as singular: it jumps from one
static state to another. A recent paper [6] does present a model for the pull-
in voltage of a beam with fixed ends, whereas for the µWalker case one end
moves freely. Furthermore, no stick region was taken into account in [6], which
is essential to determine the step size, in the case of the µWalker. Especially
the stick region is of major importance for hysteresis analysis and thus for
calculating total energy losses and optimizing the design. A tractable, analyt-
ical model for both the electrostatic and elastic domains is derived. Various
aspects of the beam motor are analyzed, such as hysteresis and design param-
eter dependencies. The beam inertia dynamics has been omitted here; mass
effects and vibrations are not expected to have a major impact on the results.
These effects can be coped with and implemented later on, in numerical stud-
ies of a refined model. Finally, the model is compared to measurements of the
µWalker.

The working principle of the µWalker is based on the caterpillar’s moving
principle. Variation of the device output force is accomplished by changing
the electrostatic forces applied. These forces are a result of voltage variations
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Fig. 2. The creeper beam is in either of the three modes:
a) at rest while no voltage applied (Vbeam = 0);
b) in free mode, due to an applied voltage below the critical voltage (Vbeam < Vcr);
c) in stick mode due to a voltage Vbeam, where Vbeam > Vcr.

applied to the three distinct inputs, namely two for the supports and one for
the beam. Let us assume that the device has to complete one step to the
right. In the start position, only the right support is clamped by an applied
voltage. The left support is free to move sideways. Next, the beam voltage
is increased, such that the distance between the supports decreases by one
step size. The left support is now clamped, while the right support is released
shortly thereafter. The beam voltage is lowered and the beam relaxes. This
completes one cycle of the µWalker. For more details, see Figure 2.

2 Elastic Part

The system of a creeper beam has bending or elastic energy and electrostatic
energy, which are treated in this and the next section respectively. The beam
profile is assumed to be a function of a single parameter for the beam deflec-
tion, a, where a < d and d is the distance between the beam and the contact
surface. (See Figure 2(a,b).) In a variational approach, where the minimum
energy is determined for the beam profiles, the solution is an upper bound
for the energy, and the typical pitfalls of nonlinear differential equations are
avoided. The profiles are a function of a single parameter a, which is the dis-
tance from the rest position to the center of the beam, namely at x = 0:

y(x) = d− a(1− x2)2 , (1)

where y(x) is the vertical deflection, and x ∈ [−1, 1] is the reference coordinate.
Throughout the paper, the results are expressed in terms of the units of half
of the length of the beam L0 = 2, and energies are in units of energy per
width of the beam w, since both the elastic and the electrostatic energy scale
linearly with the width of the beam. In this way, the equations are easier to
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follow. Only at the end, the value of L0 is set equal to the real beam length
of the µWalker.

From numerical studies [7], the profile chosen has an appropriate shape, given
the clamped boundary conditions. Even if small deviations of the beam shape
occur, their influence on the energy is only of second order and negligible. The
energy functional has an elastic and an electrostatic part which are determined
below.

In simple beam models like the Euler-Bernoulli beam, only the vertical dis-
placement y as a function of the horizontal rest, or reference coordinate x is
determined. In our case, the horizontal displacement is also important for the
walking motion. The length of the beam is taken to be fixed in the absence of
stress through friction. Therefore, the horizontal position X(x) as function of
the reference coordinate x should satisfy:

1 = (∂xX(x))2 + (∂xy(x))2 ,

which is satisfied to second order in a by:

∂xX(x) = 1− 1

2
(∂xy(x))2 = 1− 8a2(1− x2)2x2 ,

where is assumed that |1− ∂xX(x)| � |∂xy(x)|, since a � 1. The horizontal
distance L between the ends at x = −1 and x = 1 is therefore given by:

L =
∫ 1

−1
∂xX(x)dx = 2− 128

105
a2 . (2)

The bending energy Eb of a fixed length beam is a function of the beam
curvature k[8]:

Eb =
∫ 1

−1

κ

2
k2(x)dx ,

where the constant κ is given by:

κ = EI ,

and for the curvature k holds:

k(x) = ∂xy(x)∂2
xX(x)− ∂xX(x)∂2

xy(x) ,

since the beam length is a unit function of x. For the given profile, this reduces
to the Euler-Bernoulli result [9]:

k(x) ≈ −∂2
xy(x) = −4a(1− 3x2) ,

Eb = κ
64

5
a2 =

64

5
EIa2 , (3)
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where E is Young’s elasticity modulus, and I the moment of inertia in the
direction of bending, which equals b3/12, where b is the beam thickness. Note
that both the elastic and the electrostatic energy are proportional to the width
of the beam. Therefore, the energy is expressed per unit width.

Of course it is possible to have a more elaborate model of the energy, including
higher-order terms in a. However, for qualitative results they are of little con-
sequence, as we will see. Furthermore, given the simple one-parameter ansatz
for the beam profile, the approximations are within the same order.

3 Electrostatic Part

The beam itself is a conductor, therefore inside the beam the electric field is
zero. For a given potential, the electric field E‖(x) between the beam and the
floor is given by the voltage V divided by the distance between beam and floor
y(x):

E‖(x) =
V

y(x)
.

Since d� L, we assume the perpendicular component of the electric field E⊥,
pointing in the horizontal direction, to first approximation to be negligible.
The electric field is the consequence of the surface charge density ρ(x) which
is consequently proportional to the strength of the field [10]:

ρ(x) = ε0E‖(x) .

Later, it will be shown that the parallel field approximation holds for all
physical configurations. For small values of a, if d� L, the curvature is small
and the beam shape is almost flat. Since large values of a, (a > d/2) are not
stable, those configurations will not occur and when the beam sticks to the
ground plate, the electrostatic energy is dominated by the sticking part. In
the case of stick, the gap field, parallel or not, can be neglected. In Figure 3
the equipotential lines of a very short beam at a very large deflection are
shown. Even in that extreme case the field is almost parallel. In practice, in
this case the beam will stick to the ground floor. In the operational practice
the supports may have different voltages compared to the beam, however, this
will have neglible effects for the typical flat configuration, where d� L.

The total electrostatic energy Ee can be expressed as:
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Fig. 3. The equipotential lines from a numerical study of a very short beam at large
deflection shows the leading non-perpendicular effects of the beam deflection on the
field.

Ee =
ε0
2

∫ 1

−1
y(x)∂xX(x)E2

‖(x)dx

=
ε0V

2

2

∫ 1

−1
∂xX(x)

1

y(x)
dx (4)

≈ ε0V
2

2

∫ 1

−1

1

y(x)
dx ,

where y(x)∂xX(x)dx is the area of the gap, and ε0E
2
‖(x)/2 its energy density.

The integral is a little tedious to solve. Clearly, the result is dominated by
x ≈ 0. The integrand can be expanded:

1

d− a(1− x2)2
=

1

r(x2 + ∆− 1)
− 1

r(x2 −∆− 1)
,

with r = 2
√
ad and ∆ =

√
d/a. The electrostatic energy is therefore given by:

Ee =
ε0V

2

r




arctan 1√
∆−1√

∆− 1
+

artanh 1√
∆+1√

∆ + 1


 .

For the sake of model tractability, the electrostatic energy is well fitted with
a simple squareroot singularity:

Ee =
ε0V

2

2d


2.2


 1√

1− a
d

− 1


+ 2


 .

Figure 4 reveals that the energy is fairly constant for a large range of a. There-
fore, within that range, the actual value of a cannot be determined accurately
for a given voltage. The results will depend on the details of the beam shape,
and minor differences in the fabrication process and the experiment. However,
as shall be seen later on in Figure 9, this is of little consequence for the correct
dynamical behavior, as the beam will reach the critical bending a well before
a = 0.5d, after which it will stick to the floor. Note again that the dynamics
and time scale of this motion have not been considered.
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Fig. 4. The normalized electrostatic energy, ε0V
2/2d = 1.

4 Electroelastic Part

The electrostatic and the elastic part are the opposite forces assumed to act on
the beam. The applied voltage difference puts opposite charges close together,
such that they attract, decreasing the electrostatic energy as the beam bends
and the charges come closer together. The balance can be determined from
combining the two in a single electroelastic energy. The energy functional
depends on the voltage and the distance a. For each voltage there is an energy
profile, as a function of the bending a, in which there exists a local minimum
if:

0 =
∂Eb − Ee

∂a
=

128

5
κa− ε0V

2

4d2
2.2(1− a

d
)−

3
2 .

Only the local minima amin(V ) need to be determined. Note that this corre-
sponds to a fifth-order polynomial in a, for which there is no closed analytical
solution. However, it is straightforward to determine the critical voltage for
which a local minimum of the energy exists:

V 2 = 46.5κd2a
(

1− a

d

) 3
2

,

which has a maximum for a = 2d/5:

V +
cr =

√
8.65κd3

ε0
. (5)

Often, V +
cr is also called the pull-in voltage in the literature. Since for a >

2d/5 there is no stable minimum anymore, the parallel field approximation is
justified for the case of a gap between the beam and the ground plate, since
the gap is large.
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Fig. 5. The surface now also consists of an insulation layer of thickness dlayer and
with permittivity εr.

5 Stick

When the beam hits the floor, it will stick there. (See Fig. 2(c).) In practice,
a small insulating layer exists with electric permittivity εr, which prevents
charge displacement between the beam and the surface in case there is contact.
(See Figure 5.) This situation is entirely different from the free beam of the
previous section, and determined mainly by the properties of the stick. First,
the energy associated with stick is determined. Second, the configurations are
parametrized by the size of the contact length l.

The distance h between the beam and the conduction floor is an effective
thickness, which combines the electric permittivities of the airgap and the
insulating layer:

h = d+
dlayer

εr
= d(1 + δ) ,

where δ � 1. The corresponding energy is referred to as the stick energy Es

and can be obtained from the energy density Ds:

Ds =
ε0V

2

2dδ
,

Es = 2lDs . (6)

As can be seen in Figure 2(c), the configuration is thus extended beyond a = d
by including a stick domain of length 2l, and two bending domains, each of
the length 1 − l. The bending energy can be determined from the free case.
The two ends can be glued together to yield the a = d case, with scaled
x→ x/(1− l) coordinates. The bending energy scales appropriately:

Estick
b (l) =

1

(1− l)3
Eb(a = d) =

64κd2

5(1− l)3
.

The electrostatic energy of the bending part scales with the area:

Estick
e (l) = (1− l)Ee(a = d)

= (1− l)ε0V
2

d

(
1.1√
δ
− 0.1

)
. (7)
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Fig. 6. A sketch of the configuration variable ξ. The vertical path is the distance
between the beam and the floor, at ξ = 1 the beam touches the floor, the horizontal
path is the edge of the contact area.

The total energy of the stick situation is given by:

Estick = Estick
b (l)− Estick

e (l)− Es . (8)

The minimum energy is given through the variation with respect to l, where
the Estick

e (l) term is assumed to be of small importance since δ �
√
δ. The

analysis presented in [11] confirms this. The length of the stick area, for the
minimum energy:

lmin = 1− 4

√
192κd3δ

5ε0V 2
.

If lmin is real negative, then the beam will stick at the boundary point, lmin = 0.
This situation occurs, since the first derivative of the energy kinks downwards
at the cross-over between stick and free mode, creating a cross-over minimum,
since in each domain, stick and non-stick, the boundary value is a local mini-
mum.

The distance between the beam ends changes further as the stick area in-
creases. In principle it would scale with (1− l)−1, however, for values of l → 1,
the approximation fails. The corrected length incorporates this effect:

L = 2− 128

105

d2

1− (1− 64
105
d)l

,

yielding a minimal distance of L0 − 2d for l = 1, where L0 = 2 is the beam
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Fig. 7. A sketch of the energy as function of the configuration variable ξ and the
potential for sub- and supercritical values of the potential.

length at rest. However, once the beam touches the ground, it might create
a rigid construction, such that the whole or half of the beam does not move
further. In practice, one could think about cold welding points and stick due
to certain material properties.

For a complete model, we now introduce a single configuration variable ξ,
0 < ξ < 2, to be valid in all three modes (see Figure 2). Figure 6 illustrates
this:

ξ =




ξ < 1 : ξ = a

d
, if l = 0 ,

ξ > 1 : ξ = 1 + l, if a = d .
(9)

In Figure 7, two possible solutions for the electroelastic energy have been
plotted as a function of ξ. The upper solution is called a subcritical region,
while the lower is called supercritical region. It is clear that there are two
minima for the subcritical region, while there is only one minimum for the
supercritical region. From Eq. 5, Vcr is the border between the two regions.
How the system will jump from the disappearing local minimum to the abso-
lute minimum depends on the characteristics of the voltage source, damping
coefficients, and the distributed mass of the beam. For our purpose, however,
the jump is assumed to be instantaneous without loss of generality.

The electroelastic energy can be expressed in ξ as for both the sub- and su-
percritical potential values, respectively:
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E<(ξ, V ) =
1

2
Kξ2 − 1

2
CV 2 1√

1 + δ − ξ , (10)

E>(ξ, V ) =
1

2

K

(2− ξ)3
− 1

2
CV 2 1

δ
(ξ − 1 +

√
δ) , (11)

where C = 2ε0
√

1+δ
h

is the electric capacity and K = 32
5
EId2 is the normal-

ized mechanical bending stiffness, see Eq. 3. The small constant terms were
disregarded.

In the case of absolute units, there holds:

C =w
L0ε0

d
√

1 + δ
, (12)

K =
32EId2

5L3
0

= w
64

15L3
0

Eb3d2 , (13)

where L0 is the length of the beam, and b the thickness of the beam. The
moment of inertia is given as:

I =
∫ 1

2
w

1
2
w
dy
∫ 1

2
b

1
2
b
z2dz =

wb3

12
.

The absolute scaling of the model shows that C scales linearly with size and
K with the cube of the size, such that the critical voltage scales linearly with
size (See Eq. 5.) Hence, a smaller system requires an equally smaller working
voltage.

6 Point Stick and Hysteresis

Point stick is a local minimum of the energy function at ξ = 1, if the left-
derivative of the energy profile is negative and the right derivative is positive.
In this case, the beam will touch the ground plate at a single point. This
situation occurs for

4Kδ
3
2

C
< V 2 <

3Kδ

C
.

Therefore the critical jump-back voltage for the situation from stick-to-free is
the lower bound of the point stick:

V −cr =

√√√√4Kδ
3
2

C
.

11



Fig. 8. Trajectory for certain design parameters and applied voltage.

The energy at the critical point is:

Emax =
1

2
K(1− 2δ) .

As shall be presented shortly, this corresponds to the vertical segment in Figure
9. In the situation where the voltage is increased above the upper critical value
V +
cr :

V +
cr =

√√√√√8K(1 + δ)
5
2

(
3
5

) 3
2

5C

and then lowered again till below the lower critical value V −cr , the system will
make a loop in the configuration space. Figure 8 shows a possible loop, that
the system will walk through, for a certain applied voltage as a function of
time. Let us distinguish five domains:

(1) Free mode: As the voltage increases and the beam bends due to the
electrostatic force, there is a balance between the bending and the elec-
trostatic energy.

(2) Jump to stick: At the given voltage V +
cr , the electrostatic energy domi-

nates the bending energy; the system jumps suddenly towards the stick
mode with a contact area.

(3) Stick mode: Because of decreased voltage, the stick area decreases until
it approaches zero length.

(4) Point stick mode: The beam sticks at one point, until the voltage de-
creases below V −cr .

(5) Jump to rest: The system instantaneously jumps to the rest position.

In the case of the stick mode, the voltage can be lowered even further, the
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Fig. 9. The trajectories of the system indicated through the two line segments, the
left one for increasing voltage (going into stick mode), the right one for decreasing
voltage (releasing from stick mode).

stick domain indicated by ξ > 1 will then decrease. The value of ξ for which
the energy acquires a minimum for a given voltage is given by:

ξ = 2− 4

√
3Kδ

CV 2
.

The corresponding energy follows from the virial theorem:

Emin = −(3
1
4 − 3−

3
4 )K

1
4C

3
4V

3
2

2δ
3
4

+
1

2
CV 2(1−

√
δ) .

As an aggregation, Figure 9 shows one of several possible system trajectories,
depending on physical parameters. The left segment represents the beam for
increasing voltage starting at V = 0, where the beam is stuck in the bend
minimum. The right part is for decreasing voltage, when the system is stuck in
the stick minimum. The vertical segment indicates the point contact sticking.
The zoom-in shows that there is indeed a flat minimum, which disappears
below a certain energy profile, and thus the local minimum also disappears.
Formally, at this point (ξcr) holds:

∂E (ξ)

∂ξ

∣∣∣∣∣∣
ξ↓ξcr

=
∂2E (ξ)

∂ξ2

∣∣∣∣∣∣
ξ↓ξcr

= 0 .

The energy loss in the system during a cycle is associated with the two jumps,
when the voltage crosses the two critical values V +

cr and V −cr . The down jump
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Fig. 10. The µWalker dimensions assumed.

corresponds to an energy jump (ξ = 2
5
(1 + δ)→ ξ = 2− 4

√
3Kδ/CV +

cr
2):

∆E↓ = Emin(V +
cr )− 2K(1 + δ)2

25
+

CV +
cr

2

2
√

3
5
(1 + δ)

,

while the up jump corresponds to an energy jump (ξ = 1→ ξ = 0):

∆E↑ = Emax =
1

2
K(1− 2δ) .

Thus, the total energy needed for one cycle equals:

Etot = ∆E↓ + ∆E↑ .

7 The µWalker - a case

As a test case, a design similar to the µWalker is presented in [2]. The bulk
material is Silicon (Si), whereas the insulation layer consists of Silicon nitride
(SIRN). The Silicon nitride has a dielectric constant in the range of 5 to 8, and
a dielectric strength of about 1.0− 2.0 108V/m. In the case of voltages below
100V , a layer of 1.0µm is sufficient for reaching the stick phase. However, in the
case of the µWalker, the bottom surface is specially prepared for enhancing
sliding properties. The thickness of the dielectric layer is 0.210µm, but the
effective thickness is much larger than the corresponding δ = 0.03, due to
the prepared contact area of the beam with small pins of about the same
height. The small pins create an airgap when the beam hits the ground plate.
The original design, without pins, stuck to the ground plate, even after the
voltage was decreased. This was the result of large stick energy, due to the
small value of δ. Although, we have not been able to determine δ accurately
from the design, the size of the pins suggests an effective Silicon-nitride-air
layer of around δ = 0.2, which is mainly due to the large airgap. This value
can experimentally be obtained from the step size.

The length L0 of the beam is 180µm and the distance d to the floor is 1.85µm.
Figure 10 shows the dimensioning assumed. The width of the beam is 94µm,
which justifies the parallel field approximation in the third direction. The beam
itself has a thickness of 1.2µm, which corresponds to a moment of inertia of
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Fig. 11. The squares are the measured step sizes. The solid line is the step size
from the model. The dashed line is the step size for the adjusted beam thickness of
1.35µm.

I = 1.35 10−23m3. For an Young’s modulus of E ≈ 150 109Pa, Equations 12
and 13 give:

K = 6.1 10−11Nm−1 , (14)

C = 7.4 10−14F . (15)

According to the model proposed, the upper critical voltage V +
cr ≈ 31V , while

the lower critical voltage V −cr ≈ 17V . The maximal displacement in a single
cycle is about 50 nm, if it is assumed that half of the beam is fixed once it
touches the ground plate, while the other half still pulls inward. In Figure 11
some measured step sizes of the µWalker are plotted together with the results
of the model presented, including the parameters from above. The results
depend strongly on the thickness of the beam. A slight adjustment of the
beam thickness from 1.2µm to 1.35µm would diminish the small discrepancy
in the pull-in voltage between the model and the measurements, as can be seen
in the figure. The results depend only weakly on the effective layer thickness
δ. A smaller delta would increase the step size, but would leave the pull-in
voltage the same.

8 Conclusions

For the sake of simplicity, dynamical effects were ignored throughout the pa-
per. In principle, the system will stay in the local energy minimum if the
changes are infinitely slow. If the changes occur faster, the system will build
up inertia, which could lower the energy barriers and the pull-in voltage. Fur-
thermore, if the kinetic energy is not enough to jump the barrier, the system
will start to oscillate around the minimum. In fact, the point stick situation
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will quickly disappear due to dynamical effects. From Figure 9 it is clear that
for values of ξ slightly smaller than 1, the system will slide back to ξ ≈ 0, if
the voltage is relatively low. This can also be observed in practice.

The model presented identifies the relevant parameters of the creeper-beam
system: the stiffness K, the capacity C, and the insulator thickness δ. Espe-
cially the latter is seldom mentioned as an important design parameter for
the stick regime. The precise numerical coefficients play a secondary role in
finding the analytical dependence of several quantities on the design parame-
ters. Furthermore, the model gives a clear handle on the different dynamical
regimes, and identifies a third configuration regime, namely the point-contact
stick, for a range of applied voltages. In a more elaborate model, where the
bending is not simply modeled by a single parameter, this could be further
investigated. However, the scope of this paper is limited to quantify the main
features of the creeper beam model, such that the relevant parameters and
their effects are identified.

For a model with only one parameter that has been fitted to experiments,
namely δ, the results compare very well to the measurements. Moreover, it
can be used to fit the data using the three parameters K, C, and δ, such that
different properties relevant for design, such as step size, deformation, and
force can be compared. As has been remarked in Section 5, smaller dimensions
of the beam imply smaller working voltages.

It should be mentioned that friction between the supports and the ground
plate may cause stresses in the beam which reduce the step size. In this case
the beam will act as a spring rather than fixed-length, bending beam. The
dynamical effects – for example as a result of beam inertia – will limit the op-
eration speed since the mechanical effects do not occur instantaneously with
the change of the voltage. All these effects are under investigation, both in
numerical as well as in experimental studies. However, the simple model pre-
sented here has been the guiding principle, as it covers the dominant behavior
of the electroelastic beam.

Future work will include 20-SIM modeling of the µWalker as a complete system
including stick-slip, friction and other effects that play a great role in the ever
interesting world of micro and nano devices.
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FIGURE CAPTIONS

(1) One dimensional version of the µWalker used for modeling and simula-
tion.

(2) The creeper beam is in either of the three modes:
a) at rest while no voltage applied;
b) in free mode, due to an applied voltage below the critical voltage
(V1 < Vcr);
c) in stick mode due to a voltage V2, where V2 > Vcr.

(3) The equipotential lines from a numerical study of a very short beam at
large deflection shows the leading non-perpendicular effects of the beam
deflection on the field.

(4) The normalized electrostatic energy, ε0V
2/2d = 1.

(5) The surface now also consists of an insulation layer of thickness dlayer and
with permittivity εr.

(6) A sketch of the configuration variable ξ. The vertical path is the distance
between the beam and the floor, at ξ = 1 the beam touches the floor, the
horizontal path is the edge of the contact area.

(7) A sketch of the energy as function of the configuration variable ξ and the
potential for sub- and supercritical values of the potential.

(8) Trajectory for certain design parameters and applied voltage.
(9) The trajectories of the system indicated through the two line segments,

the left one for increasing voltage (going into stick mode), the right one
for decreasing voltage (releasing from stick mode).

(10) The µWalker dimensions assumed.
(11) The squares are the measured step sizes. The solid line is the step size

from the model. The dashed line is the step size for the adjusted beam
thickness of 1.35µm.
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