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Abstract— For continuous physical systems described by
partial differential equations, the energy density and the energy
flux yield proper boundary conditions, which can serve as input
and output. The minimal model is the energy flux solution
depending solely on the boundary input, without any internal
dynamics. The internal dynamics, given by a state vector, arises
through an inverse expansion of modes around the minimal
model state. Such an expansion yield a fast convergence of
dynamics driven by the boundary input.

I. INTRODUCTION

The analysis and simulation of systems described by
Partial Differential Equations (PDE’s) is an open problem.
In many cases a linearized Finite Element Method (FEM)
model suffices, if the corresponding A, B, C, D system is
well-defined. However, the state x of a FEM model is usually
too large for successive iterations needed for simulation and
optimization. Hence, further model reduction is required.
However, it is worthwhile to have a closer look at the original
model in terms of PDE’s and its qualities, in order to retain
relevant features of the system at hand. The different relevant
features of a system are not always intrinsic qualities of
the model, in many cases, they depend on the setting, the
operational conditions, and the interaction within the system
network.

In the theory of model order reduction of linear systems,
the features of the system are recognized as the structure of
the respective matrices [2], such as the mass and stiffness
matrices M and K. An appropriate model order reduction
leaves these matrices symmetric and positive, which is not
guaranteed by all methods. The systems under consideration
are usually monolithic. A single state vector x incorporates
all of the dynamics. If the system was composed of smaller
components, this information was lost in the construction of
the large system matrices.

For systems composed of smaller modular components,
the interaction among them is a central feature, in particular
to obtain physical insight. Since without interaction, each
component will be isolated, and its dynamics often trivial.
Even if systems interact, not all possible internal dynamics
will be excited, only the modes driven by the input through
other components are relevant, which should be retained in
the reduced model.

In the mathematical literature of PDE’s problems with both
internal dynamics and input and output are mixed boundary
value problems [5], or initial boundary-value problems [4]. In
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the case of nonlinear PDE’s the existence and uniqueness is
an open problem. For linear PDE’s the Lopatinski condition
[8] guarantees existence and uniqueness for elliptic PDE’s.
However, this condition can only be extended, as far as we
know, to dynamical systems, described by hyperbolic PDE’s
if the PDE factorizes into characteristics [3]:

P (∂t,∇, z) = f(z)
∏

i

(∂t + gi(z) · ∇) ,

where gi(z) is the velocity field; the solution of the char-
acteristic. The linear homogeneous wave equation in one-
dimension has the well-known decomposition:

P = ∂2
t − c2∂2

z = (∂t − c∂z)(∂t + c∂z) ,

such that any solution to the wave equation is the sum of
two arbitrary functions: f(ct−z) and g(ct+z). A boundary
condition u(t) at z = 0 for a system z ≥ 0, would allow one
to match the right-moving solution f(ct−z) to the boundary
condition minus the left-moving solution g(ct+ z). In many
cases, such as higher dimensions and for realistic systems,
constructing the characteristic is not a feasible approach. The
Green function method incorporates these principles [6].

Furthermore, in the case of physical systems, we are not so
much interested in some boundary condition of some PDE.
The appropriate boundary conditions should follow from the
appropriate PDE, which is describing the essential dynamics
of the system. The energy flux plays an essential role in
determining the appropriate boundary conditions.

II. ENERGY FLUX

The energy of the system is given by the Hamiltonian
density function: H(q, p), which depends on the canonical
position and momentum fields q(z) and p(z). The energy
is conserved, hence the Hamiltonian density satisfies the
continuity equation:

Ḣ + ∇ · S = 0 ,

where S is the energy flux [1]. The energy flux is the key
guiding principle is the analysis in the interaction between
components. The energy function is a positive operator of
the state space, or phase space, and zero energy corresponds
to the lowest, rest, or ground state. Hence stability analysis
and dissipation uses energy and its in- and out-flow.

The energy flux is not uniquely defined. It depends on
what quantities are allowed to flow across boundaries. For
example, an ideal balloon might change is shape but not
its content, while an air pocket can both change shape
and content. Constraints on the fields might complicate this



matter further. The port-Hamiltonian H ′ defines the energy-
flux. The port-Hamiltonian [9] arises from the Hamiltonian
through a variable substitution:

H(q, p) = H ′(Dq, p) ≡ H ′(q′, p) ,

where D is an appropriate differential operator. The
Hamilton-Jacobi equations, the equations of motion, are

(

q̇′

ṗ

)

=

(

0 D

−D∗ 0

) (

δq′H ′

δpH
′

)

,

where D∗ is the formal adjoint of the differential operator
D.

The energy flux follows from inserting the equations of
motion into the time derivative of the Hamiltonian density:

Ḣ = δq′H ′DδpH
′ − δpH

′D∗δq′H ′ ≡ −∇ · S .

The expression on the right-hand side is the divergence of
the energy flux, which in many cases can be written as the
bilinear product using the boundary operator θ:

δq′H ′θ(n)δpH ′ = S .

Clearly, appropriate boundary conditions are expressed in
terms of δpH

′ and δq′H ′ rather than the normal state
variables q and p.

For the linear wave equation the Hamiltonian density is:

H =
p(z)2

2ρ(z)
+

1

2
κ(z)(∇q(z))2 .

The associated differential operator is the gradient D = ∇,
the adjoint is the divergence D∗ = −∇·. The directional
variable q′ = ∇q. Therefore the boundary operator θ is
simply the surface normal:

θ = n

and the energy flux follows from the Green identity:

S =
p

ρ
n · κ∇q .

More general differential operators appear if there are more
that one type of energy flux. For example, take the Euler-
Bernoulli beam. The elastic energy is given by the second
derivative of the deflection y(z):

Helastic =
1

2
EI(∂2

zy(z))2 ,

which may seem like a single bending energy. The associated
differential operator would be D = ∂2

z such that q′ = ∂2
zy,

however, the boundary operator θ is:

fθg = g∂zf − f∂zg .

These two terms correspond to the two boundary conditions,
which need to be set for an Euler-Bernoulli beam, at each
end, which lead to three possible solutions for S = 0: free
(δq′H = ∂zδq′H ′ = 0), clamped (δpH

′ = ∂zδpH
′ = 0), and

supported (δpH
′ = δq′H ′ = 0), boundary conditions, where

in all cases the initial condition q = 0, at the boundaries, is
used.

III. MINIMAL MODEL

The initial boundary-value problem, or mixed problem,
corresponds to data at an initial time, and data at the
boundaries for the time-interval under consideration. The
boundary conditions are the input to each system. Even in
the absence of internal dynamics, forces are “transmitted”
from one end to the other. Otherwise the Newton’s basic
force balance cannot be preserved. The energy flux plays a
key role in linking boundaries together. If there is internal
dynamics, such as vibrations, an internal state x is required
to vibrate, and these internal states require initial data. In
the absence of an internal state, the boundary values still
influence each other, since the values at the boundary as a
whole determine the static energy H ′. The instantaneous,
or adiabatic solution, which is the minimal energy solution
for the given boundary conditions, we will call the minimal
model of the system.

In different cases, the minimal model arises in different
ways. For structural systems under force input one can think
of the minimal model as a massless-spring model for internal
deformations caused by opposite forces, together with a
rigid-mass model for the acceleration due to the resultant,
or sum, force. In the case of position input for a structural
system, the free motion and the corresponding acceleration is
absent, and the minimal model is the minimal elastic energy
for given boundary conditions.

The minimal model (q′0, p0) is the decomposition of a
solution to an elliptic PDE. Furthermore, it is the lowest
energy state for the given boundary conditions. If a spectral
decomposition of the Hamiltonian is made, each vibration
mode corresponds to a canonical pair of states (q′i(z), pi(z)),
the remainder, is a function of the boundary only, and
contains no dynamics at all. Hence, the state (q′0, p0) cor-
responding to the minimal model, can be formulated as the
solution to the variational problem:

min
(q′,p)

∫

dt

∫

dzH ′(q′, p) ,

given:
Bqδq′H ′ + BpδpH

′|Γ = u ,

where Bq and Bp are the boundary conditions, in terms of the
appropriate boundary variables; the variables of the energy
flux.

Even is the canonical energy flux variables δq′H ′ and δpH
′

are used for the boundary conditions, finding the minimal
model can be a nontrivial task. The minimal model is not
always a constant solution, it can, as will be shown below,
be an accelerating solution.

In the case of a string, the wave equation of before, in
one dimension, z ∈ [0, 1] with a distributed mass ρ(z) and
varying elasticity κ(z). See Figure 1. The total mass is:

M =

∫ 1

0

dzρ(z) .

If the outward forces at both ends are given F0 and F1. The
minimal solution is the accelerating string with a constant
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Fig. 1. A string with a nonhomogeneous mass ρ(z) and elasticity κ(z).
The static boundary input are unequal forces F0 and F1 at either ends.

internal stress, which is the balance of external forces and
inertial forces. The acceleration a, constant along the string,
is the result of the resultant force:

Ma = F1 − F0 ,

such that the force is constant in time: DδpH = 0. The force,
due to the inertia and the external force, along the string is
given by the integral:

F (z) = F0 + a

∫ z

0

dzρ(z) ,

such that the boundary condition matches: F (1) = F1.
The force is precisely the type of variable which is better
expressed in terms of the variational derivatives δxH ′ than
the state variables x = (q′, p). In this case, the force is
directly related to the internal deformation:

F (z) = δq′(z)H
′ = κ(z)q′(z) ,

which, expressed in the boundary conditions is:

q′0(z) =
1

κ(z)

(

F0 +
F1 − F0

M

∫ z

0

dzρ(z)

)

,

and the minimal model consists of a deformation which is a
function of the force only, and an acceleration which depends
on the time-integral of the resultant force and a single initial
condition, or rest time t0:

p0(z, t) = ρ(z)
F1 − F0

M
(t − t0) .

The kinetic energy T is a quadratic function of time:

T (t) =

∫

dz
p0(z)2

2ρ(z)
=

(F1 − F0)
2

2M
(t − t0)

2 ,

which yield a minimum over a time domain, if t0 is at its
center.

The boundary condition in terms of the force F0, F1 is
extended throughout the domain: F (z) for z ∈ [0, 1]. The
force is the solution to the differential equation:

∂zF (z) = aρ(z) ,

for an unknown acceleration a, given F (0) = −F0 and
F (1) = F1. The minimal-model state variables follow
directly from F (z) and the equation of motion:

ṗ0(z) = −D∗δq′(z)H
′ = ∂zF (z) ,

where DδpH
′(q′, p0) = 0.

IV. EXPANSION AROUND THE MINIMAL MODEL

The effects of the boundary conditions are now incorpo-
rated in the minimal model. In the stationary case, with
constant input, the minimal model is the full result. The
variations in time of the input give rise to internal dynamics,
such as vibrations. However, the internal dynamics is no
longer a direct result of the boundary conditions but from
the minimal model (q′0, p0). The minimal model state serves
as the background, or source, field for the internal dynamics.
The resulting states and dynamics are automatically smooth,
and the number of additional states required to reach con-
vergence is small. The fact that the minimal model is the
quasi-stationary result for the operational input guarantees
the convergence, if the eigenfrequencies are typically higher
than the time-variations of the input.

The expansion in terms of additional modes is generated
by inserting the minimal model into the equations of motion.
The constant input corresponds to the minimal model, the
internal states are therefore generated through the expansion
of the force:

F (t) = F + F (1)t +
1

2!
F (2)t2 +

1

3!
F (3)t3 + · · ·

The minimal model (q′0(F (t)), p0(F (t)) tracks this expan-
sion instantaneously, the deviations of the true dynamics are
additional states:

(

q′(z, t)
p(z, t)

)

=

(

q′0(F (t)) + q′1(q
′

0, p0) + · · ·
p0(F (t)) + p1(q

′

0, p0) + · · ·

)

.

Hence, the equations of motion are not used to determine
the time-derivatives ẋ, given the state x, but in reverse: given
the time-derivative ẋ0 = (q̇′0, ṗ0) = (q′0(Ḟ ), p0(Ḟ )), which
(q′0, p0) is a solution to the stationary equations, to determine
the corresponding change in states:
(

q̇′0
ṗ0

)

=

(

0 D

−D∗ 0

) (

δq′H ′(q′0 + q1, p0 + p1)
δpH

′(q′0 + q1, p0 + p1)

)

.

Since (D∗δq′H ′(q′0, p0), DδpH
′(q′0, p0)) is already a solu-

tion to the stationary equation, it might suffice to use a linear
expansion of H ′ around (q′0, p0), for the higher order terms
in a nonlinear port-Hamiltonian.

However, several approaches and approximations exist
to recover the next terms (q′1, p1), (q′2, p2), and so on,
in the expansion. In the linear structural FEM case, the
expansion reduces to the Krylov [2], [7] expansion Kn(A =
K−1M, B = (q′0, p0)), where M and K are the mass and
stiffness matrices, and the starting state is the minimal-model
state.

The additional work put in the generation of the modes
(q′i, pi) as the inverse expansion of the D, D∗ operators will
pay off in the actual simulation using the reduced model.
The inverses of D and D∗ are nonlocal operators and span
the full domain. It would not be an appropriate expansion
for very high orders, and very high accuracy, since the the
corresponding eigenvalue problem is a Hankel, or moment,
problem, known to yield oscillatory results in the order, after
the initial fast convergence.



V. CONCLUSIONS

We have treated the initial boundary-value problem from
the perspective of the physical system. The energy flux de-
termines appropriate input and output variables. The minimal
model is the lowest order model which can be devised for a
particular choice of boundary conditions, or boundary input.
It could be seen as the continuous analogue of the lumped
model, of a component. Since the starting point of the
analysis is the input of the system, in terms of the quantifier
energy, it can serve to recuperate the leading order internal
dynamics, due to this input. The expansion in the modes of
the internal dynamics can be seen as the inverse expansion
as used for time derivatives. The next order term counteracts
the time-dependence of the previous term in the expansion.
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