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Abstract

Constant velocity or constant force FEM so-
lutions are static-deformation states, where
the elastic deformation is stationary. These
are the typical operation conditions. Time-
dependence, or fluctuations, of the static-
deformation states are treated as perturba-
tions, leading to a fast-converging expansion,
for typical operation conditions, in which the
time-scale of the input force is slower than the
internal dynamics.
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1 Introduction

The premise that the design of a system is nearly
ideal, and only small changes, or deviations, of the
pre-described action occur, is as useful as it is re-
alistic. To start the analysis from scratch, and re-
cover the dynamics, and, on top, possible unwanted
behavior is much more cumbersome, and requires
much more numerical power, than to accept the given
structure and seek out the corrections to the leading-
order dynamics. The operational dynamics, or static-
deformation dynamics, is the dynamics of the system
as it is designed to operate. Possible deviations are
usually considered as vibrations around this opera-
tional state. However, such vibrational analysis has

several drawbacks. First, it is not immediately clear
if and how vibrations are driven and how they de-
pend on the different operation mode parameters,
such as operation speed. Second, vibrational anal-
ysis is performed around a rest state, while in op-
eration there might not be a clear rest state; the
vibrational frequencies might vary along the opera-
tion trajectory. Third, the important effects, such
as deviations from the desired trajectory are usually
combinations of static-deformation deformations and
vibrations, which are only partly described by vibra-
tional analysis. Finally, as we shall see, it is usually
the changes in static deformation which drive the vi-
brational, hence there is where design analysis should
start.

2 Static-deformation solutions

The operation, in the traditional language of me-
chanical system, consists of a certain applied force,
which causes the system as a whole to move. The
distributed mass, given by the mass matrix M, and
the distributed friction D, resist motion, and the in-
ternal force balance cause the system to deform with
a displacement x, determined by the stiffness matrix
K. The resulting equation of motion is the dynamic
response x(t) of the applied force F:

Mẍ + Dẋ + Kx = F

We assume the system to be free to move, such that
the overall displacement q is nothing but a change of
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Figure 1: The reference coordinates ri of the unde-
formed system, and the coordinates ri + xi, the sum
of the reference coordinate and the displacements xi

of the deformed system. The elastic energy depends
generally only on the displacements xi, however, the
reference coordinates are important, e.g., in an accel-
erating frame.

frame, with no associated elastic force:

Kq = 0 (1)

Throughout the paper, different approximations of x
are made. Most sections start with a particular choice
of x. Generally, they consists of two types of approx-
imations. First, separating the time-dependent and
the stationary part, where the time-dependent part
corresponds to the rigid, or operational, motion. Sec-
ond, constructing a number of modes and restricting
the dynamics to these modes.

In most cases only the displacement x is of inter-
est. However, in some cases, such as accelerating
coordinate systems, or rotations, also the reference
positions r are important, as we will see:

x → r + x

See Figure 1.

In the case of three spatial dimensions, the vectors
x and F have 3N dimensions, for N points, or nodes:
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This sum selects the rigid-body dynamics of the sys-
tems; it can also be generated by projecting on all the
rigid-body displacements qi, corresponding to trans-
lations of the system as a whole. Furthermore, vector
operations, such as the outer-product, are assumed to
be distributed:

sum[x×F] = sum [(x1 × F1,x2 × F2, · · · ,xN × FN )]

which, in this case, yields the sum torque.

2.1 Coordinate frames

The rigid-body modes Ker[K] are a natural way to
define an inertial system. For a free floating object,
or free falling in the case gravity is taken into ac-
count, there are six rigid-body modes, corresponding
to three translation directions, and three rotation di-
rections. Hence a solution q of Kq = 0 can be added
at will to any solution. Furthermore, a constant so-
lution qt for arbitrary time t can be added at will as
well in the case of the translational modes, given by
a linear subspace Kqt = 0.

The internal configuration would naturally be the
configurations xr which are orthogonal to the rigid-
body modes: qT xr = 0, or perpendicular to the null-
space of K. However, the orthogonality depends on
the choice of metric. The traditional metric qT xr,
based on the nodes, depends on the inhomogeneities
of the grid. The common choice for internal config-
uration is the configuration that leaves the center of
mass invariant: Mxm = 0, which is invariant for a
change of coordinate system, for example, it is in-
dependent of inhomogeneities of the grid. It corre-
sponds to the metric 〈q,x〉M ≡ qT Mxm → 0. This
configuration can be generated from the first internal
configuration by adding a rigid translation, which is
an element of the null-space of K:

xm = xr −
∑

i=x,y,z

qT
i Mxr

qT
i Mqi

qi
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where qi is the rigid body translation in the i-th di-
rection.

The details of the decomposition of the configura-
tion in rigid motion and local deformation eventually
boils down to the generalized inverse of the singular
stiffness matrix K.

Since the total, integral labor is the inner-product
of force and displacement, the choice of metric for the
displacement as an extensive quantity; weighted with
the mass, yields an intensive force:

dE = dEelastic + dErigid = FT
⊥dx + FT

‖ dq

such that the decomposition of the force F into in-
ternal, or deformation, force F⊥ and global, or rigid-
body, force F‖ is determined by: FT

⊥q = 0 and
FT

‖ x = 0. We will see, for example, that a match-

ing acceleration qt2 for a particular rigid-body force
F‖ yields a consistent decomposition, where the force
can be interpreted as a null vector qf of K, weighted
with the mass:

F‖ = Mqf

which therefore satisfies FT
‖ x = 0. The physical in-

terpretation is that each finite element with a given
mass undergoes the same free acceleration through a
force proportional to the mass. The force perpendic-
ular to the rigid-body motion is the remainder of the
total force:

F‖ = Mqf

qT
f F

〈qf ,qf 〉M
≡ F − F⊥

Clearly, qT
f F⊥ = 0. See Figure 2.

In the case of damping, the situation changes
slightly, the resistance to motion is no longer the iner-
tia, but a combination of resistive forces and inertia,
the parallel component of the force F‖ is adapted
to that situation. Furthermore, the inner-product
〈·, ·〉∗ should also change. In this paper, the starting
point is the equation of motion and the decomposi-
tion of the motion into a rigid-body motion, lying in
the null-space of the stiffness matrix, and the static
deformation. Rather than recovering the metric, we
will project the equations on appropriate vectors, in
the standard Hilbert-Courant l2-sense.

F

F

F

F

x

M

Figure 2: A simple example of the separation be-
tween rigid-body motion and its associated force and
the remainder of the force causing the deformation.
A block is pushed forward from the center. The
rigid-body force F‖, calculated through sumF, is dis-
tributed throughout the block, while the difference
between the applied force and the inertial reaction
force F⊥ = F − Ma causes the deformation x. The
rigid-body force F‖ causes the rigid-body motion on
the lumped mass M = sum[diagM], without causing
internal strain.

2.2 Constant acceleration

One of the most common operational mode, or static-
deformation solution, is the case of constant force,
causing a constant acceleration. We neglect the fric-
tion D = 0. The displacement x(t) now consists of
two terms: a constant deformation x, which does not
depend on the time t, and a global, or rigid, acceler-
ation:

x(t) = x +
1

2
at2

The acceleration a should match the applied force,
which is the Newtonian rigid-body relation between
the total mass, and the total force.

sum[F−Ma] = 0

which is a sum over N nodes only, yielding an equa-
tion for each spatial dimension. Furthermore, the
lumped force should act on the center-of-mass, or
the lumped mass, to prevent to object from rotat-
ing. Therefore the torque should also be zero:

sum[(r + x) × F] = 0
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where r + x = 0 is the the center of mass, which
depends on the deformation. Inserting this solution
in the equation of motion yields:

Kx = F −Ma

which can be satisfied despite the singularity in the
stiffness matrix Eq. 1, since, F − Ma is perpendic-
ular to the null space of symmetric matrix K. Due
to the singular nature of K the solution x can be
chosen such that sum[Mx] = 0; the center-of-mass is
independent of the deformation x.

2.3 Constant velocity under friction

Another typical case is the maximal operating speed
under constant force, caused by a balance between
friction and force. In this case the damping D is
not neglected. The solution is again constant defor-
mation x, and, in this case, a constant rigid-body
velocity v:

x(t) = x + vt

Again the velocity should match the force, through
the rigid-body relation:

sum[F −Dv] = 0

which yields the solution:

Kx = F −Dv

Similar to the constant acceleration case, the struc-
ture deforms with x, to distribute the force through
the system. The two cases are specific examples of
an augmented static force input Fi with zero mean,
or rigid-body part, sum[Fi] = 0:

Kxi = Fi

The force is the sum of the applied force and the
reaction force, either friction or inertia. Besides the
condition of linear force balance, the torque balance
is required to stop the object from spinning:

sum[x × Fi] = 0

Otherwise the object would start spinning faster and
faster around its center of mass. The sum[Fi] = 0

and sum[x × Fi] = 0 are not all the possible static-
deformation solutions, in the case of rotation, an ad-
ditional term arises, on the left-hand side of the equa-
tion.

2.4 Constant angular velocity

In the case of a rotating motion, around an axis, it is
appropriate to choose the origin of the coordinate sys-
tem such that is matches the axis: x → x0 + x. Fur-
thermore, the rest-position, or reference coordinate, r
is relevant in this case. The static-deformation case
is the constant angular velocity ω. The velocity of
reference point r is given by:

v(t) = ω × (x + r) = Ω(x + r) (2)

which depends on the displacement, since if a point
moves further away from the axis, it will move faster,
for a constant angular velocity. Note, that we work
in body-frame coordinates, which yields simpler ex-
pressions for the static deformation x, cause by the
centrifugal force. The time dependent position x(t)
is given by the rotation matrix R, which can be ex-
pressed in terms of the exponentiated generator of
rotation Ω:

(x(t) + r(t)) = R(t)(x + r) = eΩt(x + r)

where the time dependence is solely in the rotation
matrix:

Ṙ(t) = ΩR(t)

Determining the acceleration:

(ẍ + r̈) = ΩΩ(x + r) = −Ω2E(x + r)

where the E is the projection in the rotation plane,
yielding the distance to the rotation axis ω: E2 = E,
ωE = 0. For example, for the rotation around the
z-axis, we find:

Ωz =





0 1 0
−1 0 0
0 0 0



 Ez =





1 0 0
0 1 0
0 0 0





Inserting the results in the equation of motion, for
D = 0:

(K− Ω2ME)x = Ω2MEr
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Generally, the second term on the left-hand side
is small. In that case the the equation reduces
to the generic case, however, without necessarily
sum[Ω2MEr] = 0 sum force zero, as the center of
mass does not have to coincide with the rotation axis.
It should be noted that applying the linear theory of
elasticity to problems of spinning structure is dan-
gerous, as for very large displacements instabilities
occur.

2.5 Constant torque under friction

In the previous subsection we considered a con-
stant angular velocity, without external torque, sus-
tained through the lack of friction. Another static-
deformation case of constant angular velocity would
be the balance of friction with torque. This will
lead only to a static-deformation state if the damp-
ing force is constant, which is, for example, the case
if the system is invariant in the body-frame coordi-
nates. The linear force, causing translation, is set to
zero, as we only consider the angular motion:

sum[F] = 0

while the applied torque balances the friction:

sum[(r + x) × F] = sum[(r + x) ×Dv]

where r = x = 0 is the rotation axis. The angular
velocity is the same as for the frictionless case Eq. 2.
Note that this is a self-consistent problem; a change
in deformation will cause both a change in friction
and a change in applied torque, for a given force F.
However, the angular velocity Ω is easily adjusted
to recover the static-deformation solution. Inserting
this in the equation of motion, yields an augmented
result, with the same radial equation as before, but
an additional tangential equation:

(K − Ω2ME)x = Ω2MEr

DΩx = F−DΩr

where the applied force F is in the body frame, ro-
tating with object. The two equations are coupled.

3 Slow changes

Static-deformation solutions can be combined to gen-
erate an approximate solution for a more general
force input. The dynamics of the deformation is ig-
nored. Given a general rigid-body motion, a combi-
nation of acceleration and velocity: 1

2at2+vt → q(t),
inserted in the equation of motion with α + β = 1,
such that the total force is F, yields:

Kx = F −Mq̈−Dq̇ = (αF −Mq̈) + (βF −Dq̇)

where the deformation is the corresponding linear
combination of the static-deformation solutions for
constant velocity for the force F, and constant accel-
eration in the absence of friction for the same force:

x(t) = α(t)xa + β(t)xv + q(t)

where xa and xv are the static-deformation constant
acceleration and constant velocity solution, each for
the force F. The absence of deformation dynamics
corresponds to ignoring the time dependence of the
fractions: α̇ = α̈ = 0 = β̇ = β̈. Neglecting the time-
derivatives in the dynamics is sometimes referred to
as the adiabatic approximation. We will keep refer-
ring to it as the instantaneous approximation.

The rigid-body equation is the standard damping
equation, now microscopically motivated through the
mass and damping matrices:

Mα̈ + Dα̇ = 0

where M = sum[Mv] and D = sum[Dv].
The solution is an asymptotic approach of the con-

stant velocity under friction limit.

α(t) = exp

{

−
D

M
t

}

for a given force F.

4 Perturbations around static-

deformation solutions

In the case of control, one would like to vary the in-
put force: F(t) = α(t)F, and determine the effects of
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the deformation, rather than assuming the deforma-
tion varies instantaneously. In the simplest case one
assumes the change of deformation to be parallel to
the deformation itself. Given an instantaneous solu-
tion α(t), the direct result of the static-deformation
response to the force F(t) at a certain time t, the
first dynamical correction would be a small change
β(t) due to the change in deformation:

x(t) = (α(t) + β(t))x + q

∫ t

dt′
∫ t′

dt′′α(t′′)

where we assume that the correction is small com-
pared to the original static-deformation deformation:
α � β

Inserting the restricted solution in the equation of
motion, and projecting on the static-deformation de-
formation xT , which guarantees positive-definite val-
ues for mass and damping, to reduce the 3N equation
to a single equation for the single unknown β, we find:

xT Mxβ̈ + xT Dxβ̇ + xT Kxβ = −xT Mxα̈ − xT Dxα̇

Defining m = xT Mx, and k and d likewise, the ex-
pression reduces to a simple forced and damped os-
cillator:

mβ̈ + dβ̇ + kβ = −mα̈ − dα̇ ≡ f(t)

As an input-output system, with input α and output
β, the transfer function H , such that β = Hα, is a
rational function with two poles and two zeros:

H = −
ms2 + ds

ms2 + ds + k

In the low-frequency regime, the leading dynamical
effect is caused by the inertia, and yields a delayed
deformation, generally proportional to m/k, if damp-
ing can be ignored.

More generally, one would like to consider dynami-
cal deformation effects, where the deformation is not
necessarily parallel to the static-deformation defor-
mation:

x(t) = α(t)x + β(t)y + q

∫ t

dt′
∫ t′

dt′′α(t′′)

In this case not only the amplitude of the dynami-
cal deformation β, but also the shape y, is unknown.

However, they are assumed small, such that higher-
order time derivatives of β(t) can be ignored. Insert-
ing this into the equation of motion:

Myβ̈ + Dyβ̇ + Kyβ = −Mxα̈ −Dxα̇

which yield for every instance in time a dynamic de-
formation:

βy = −(M
β̈

β
+ D

β̇

β
+ K)−1(Mα̈ + Dα̇)x

A whole range of solutions is the result. For every
combination ratios: β̈/β : β̇/β : α̈ : α̇, a different
deformation βy exists. For the purpose of generating
the leading-order perturbation we assume damping
and higher order-derivatives of β to be zero: D = 0,
and β̈ = β̇ = 0, such that the dynamical deformation
is proportional to:

y ∼ K−1Mx

Inserting the assumed mode shape y in the equation
of motion yields:

Mx (α̈ + β) = −MK−1Mxβ̈ ≈ 0

When the small term on the right-hand side is set to
zero, the 3N equations for β reduce to 3N copies of
the simple equation: α̈+β = 0. Hence, the inertia of
the static-deformation deformation x, while chang-
ing, generates a force which is counter-acted by the
a deformation y. The fact that under the neglect of
the time derivatives of β, the equation occurs in 3N
copies, means it is a, in that approximation, exact
result. Generally, one has to decided in what extent
each of the 3N equations is satisfied, which will be
discussed below in the section on self-consistent pro-
jection.

5 Expansion in perturba-

tions around the static-

deformation state

So far, we assumed perturbations around the static-
deformation state as an instantaneous approximation
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to the time-dependent force to be small. However, it
is possible to generate a systematic expansion around
the static-deformation state, which can be truncated
at the required accuracy. Still the number of terms in
the expansion will be much less than the 3N terms of
the full equation of motion. The general principle is
to assume the deformation to be instantaneous for a
particular set of modes. The time-dependence of the
deformation gives rise to additional inertial effects,
compensated by an additional deformation, which is
the next mode in the expansion. The inertia, or dy-
namics, of a deformation mode are balanced by the
forces of the additional elastic deformation.

For an arbritrary force input: F(t) = α0(t)F, the
time dependence is given by α0, while the spatial
distribution is given by F, with an arbitrary nor-
malization. For the moment damping is not consid-
ered to influence the deformation greatly beyond the
static-deformation result. Changes in force input are
more likely to cause vibrations, for which the mass
and the elasticity are important. We will, however,
take into account the effect of damping on the mode
shapes. The static-deformation solution for α0(t) = 1
is q(t) +x0 where q(t) is the rigid-body motion, and
x0 the static deformation. We expand the full solu-
tion:

x(t) = q(t)+α0(t)x0+α1(t)x1+α2(t)x2+α3(t)x3 · · ·
(3)

where generally the coefficients decrease in order:
α0 � α1 � α2 � · · · . The mode shapes of the
deformations xn is given by the Krylov expansion:

xn =
(

K−1M
)n

x0

Since the stiffness matrix K is singular, the inverse
should be considered the generalized inverse, with the
same null space: Ker[K] = Ker[K−1]. The mode
shape y of the previous section corresponds now to
the second term in the expansion y = x1. Each of
the mode shape is an independent degree of freedom.
If the higher order time derivatives are ignored, the
equation of motion yield a hierarchy of equations for
the coefficients:

α̈n + αn+1 = 0 (4)

However, this will not yield the internal oscillations
which are part of the deformation dynamics, which
require the full equation of motion:

∑

n=0

Mxn(α̈n + αn+1) + Dxnα̇n = 0 (5)

where the static-deformation solution satisfies the in-
stantaneous equation, where the time derivatives of
α0 are ignored:

Mq̈ + Dq̇ + Kx0 = F

One should reduce the 3N equations of motion to a
number of equations equal to the number of coeffi-
cients αn.

5.1 Self-consistent projection

One should distinguish two parts to a reduced dy-
namical system, such as the dynamics in the subspace
{xn}

A−1
n=0 . First, the construction of the modes xn,

and, second, the dynamics itself. For the construc-
tion of the modes the damping is ignored, apart from
the static-deformation part of the damping. How-
ever, for the dynamics of these modes the damping
is taken into account. While constructing the modes,
the true system is approximated, and one is accutely
aware of the missing degrees of freedom. However,
once the modes constructed, the reduced-model dy-
namics should be self-consistent, such that, e.g., the
energy is conserved. Internal dynamics is mainly the
results of driven oscillatory behavior; the interplay
of potential and kinetic parts. The damping is ex-
pected to play only a role at the longer time scales,
and therefore not determine the mode shapes. Hence,
in the construction of the modes, damping effects can
generally be ignored.

The 3N dimensional equations Eq. 5 can be re-
duced to a consistent set of equations for the A coef-
ficients αn by projecting on the dual basis zi of Mxj ,
which satisfies:

zT
i Mxj = δij

which, in the absence of the damping term D = 0,
leads to the hierarchical equations Eq. 4. However,
these simple equations have a sting in the tail, as

7



they lead to numerical instabilities and inconsistent
results. In order to understand this we should look
in detail at the equation of motions and the limited
freedom we allow for the deformation x(t) in Eq. 3.
The equation of motion tells us the evolution of the
system. Hence the ẍ term in the equation of motion
should lie in the subspace spanned by: {xn}

A−1
n=0 .

Such a criterion is impossible to derive from the
equations of motion, since generally the dynamics is
not restricted to a subspace. Instead we investigate
the generating functional of the equations of motion,
and postulate a Lagrangian, for the dynamics of the
αi’s, which generates the projected equations of mo-
tion and satisfies the positivity and symmetry criteria
of dynamical systems:

L(α, α̇) =
1

2

∑

ij

α̇ix
T
i Mxj α̇j − αix

T
i Kxjαj (6)

The damping term is absent, as it is normally not part
of an energy-conserving Lagrangian, however, it can
be constructed along the same line. Clearly, the mass
and stiffness parts are positive definite and symmetric
matrices of dimension A×A. The resulting equations
of motion for each m are:

∑

n=0

xT
mMxn(α̈n + αn+1) + xT

mDxnα̇n = 0

which is the result of the least-action principle,
adding the positive definite damping by hand:

∂

∂t

∂L

∂α̇m

−
∂L

∂αm

= 0 (7)

applied to the Lagrangian Eq. 6. In this case, oscil-
lations of the deformation can occur, as can be seen
from writing the equation of motion for αi only, in
its native form:

xT
i Mxiα̈i + xT

i Dxiα̇i + xT
i Kxiαi =

miα̈i + diα̇i + kiαi = 0

where we set all other coefficients αj = 0, including
their variations in the Euler-Lagrange equation Eq. 7.

6 Control

So far we have considered the deviations of the static-
deformation state from the perspective of internal dy-
namics. However, it can also be viewed from the con-
trol perspective; how the internal dynamics depends
on time dependence of the input force F(t). Force
input is generally smooth, such that it can be ap-
proximated by an analytical function of the time t
for a finite time:

F(t) = α0(t)F = (α00 + α01t +
1

2!
α02t

2 + · · · )F

Instead of looking at the time evolution, we will inves-
tigate the analytical expansion around t = 0, which
yields the same information. Inserting this into the
equation of motion, differentiating n times, and set-
ting t = 0:

Mx(n+2)(0) + Dx(n+1)(0) + Kx(n)(0) = α0nF (8)

Making a similar series expansion of the time depen-
dence of the internal deformation:

x(t) = q0t+
1

2
q1t

2+α0(t)x̄0 +α1(t)x̄1 +α2(t)x̄2 + · · ·

where q1 and q0 are the rigid-body acceleration and
velocity of the static-deformation state, correspond-
ing to α00F, yielding the static deformation x̄0. The
coefficients αn(t) are given by the integrated input:

αn(t) =

∫ t

0

dt1

∫ t1

0

dt2 · · ·

∫ tn−1

0

dtnα0(tn)

such that the n-th derivative of the m-th term at
t = 0 is (n ≥ m):

x̄(n)
m (0) = α0(n−m)x̄m

where x̄m(t) = αm(t)x̄m; a single term in the ex-
pansion. The leading order term of each coefficient
αn(t) is α00t

n/n!. Inserting this into the equation of
motion, at t = 0 reduces to the static-deformation
problem. Inserting this expansion in the differen-
tiated equations of motion Eq. 8, we find that in
the absence of damping D = 0, the expansion cor-
responds to the even terms of the Krylov expansion
of the static-deformation state:

α01Kx̄1 + α01Kx̄0 = α01F

8



α02Mx̄0 + α02Kx̄2 + α02Kx̄0 = α02F

Clearly, the Krylov series arise for the even terms of
the deformation x̄2n:

x̄2n = (−1)n
(

K−1M
)n

x̄0

since the lowest-order term satisfies the static-
deformation solution: Kx̄0 = F. The odd terms are
zero: x̄2n+1 = 0.

6.1 Input dependence

In the previous section we have seen that the expan-
sion of the force input in powers of the time t leads to
correction terms, due to the dynamics of the defor-
mation, of the form: xn = (K−1M)nx0. With this
knowledge, an expansion in terms of xn is expected to
converge fast for arbitrary input. Furthermore, the
equation of motion can be projected onto these mode
shapes with limited effort, resulting in an A × A di-
mensional equation of motion for the coefficients αi:

A
∑

i,j=0

mij α̈j + dij α̇j + kijαj = 0

with α0(t) given, and kij = mi(j−1). Separately,
there is an equation of motion for the rigid-body
mode q, in the operation direction:

qT Mq̈ + qT Dq̇ = qT F

Since Kq = 0. The coupling occurs via the static-
deformation equation, which defines the deformation
x0:

Kα(t)x0 = F −Mq̈− qT Dq̇

with the normalization qT x0 = 0, or, more generally,
{KerK} ⊥ x0.

What has been considered a single input so far,
could be multiple input as well:

F(t) =
∑

j

αj(t)Fj

Each input generates a collection of Aj modes xj
i ,

to be included in the dynamics of αj
i ’s. They can

interact among each other through the the over-
lap xjT

i Mxk
l , xjT

i Dxk
l , and xjT

i Kxk
l . However, we

should be careful not define some general theory, not
tuned toward the operational mode. For example,
take some lever transferring force between one end
Fi and the other end Fo. It would come natural
to assume to ends as independent input Fi and Fo.
However, a lever is generally stiff and the rigid body
mode would be a single equation of motion:

mq̈ = Fo − Fi = F

where m is the sum mass of the lever. Hence, rather
than two input, one should consider it a one-input
problem for the internal dynamics. In the case of
complex motion, it might be necessary to have mul-
tiple input, but then for different time intervals:

F(t) =















α(t)F1 , t0 < t < t1
α(t)F2 , t1 < t < t2
α(t)F3 , t2 < t < t3

etc.

In such cases, it might be important to maintain some
lower modes xj

0(,x
j
1, · · · ) in the next region j+1, since

in the transition region around t = tj these modes
might not immediately disappear in the absence of
the static-deformation force Fj .

7 Energy

So far we considered only the input force F not
the corresponding displacement, except for the rigid-
body motion. Part of the energy is converted to gen-
erate internal deformation, this corresponds to the
elastic energy:

Eelastic =
1

2
xT

0 Kx0

where x0 is the internal deformation in the static-
deformation case. The definition of the static-
deformation state, for constant acceleration, was such
that the rigid-body motion under constant force per-
formed a constant acceleration. In the case of the
instantaneous approximation, the trajectory is the
time-integral of static-deformation instances. A more
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rigid object would have less deformation, and it
would therefore store less elastic energy when sub-
mitted to the same constant force. The kinetic, rigid-
body energy, however, would be the same. The total
energy is the sum of the elastic energy, which depends
only on the deformation and the force F(t) at a given
time, and the kinetic energy which depend on the
actual trajectory, i.e., the history of the force input.

Etotal(t) = Eelastic(x0) + Ekinetic(t)

=
1

2
xT

0 Kx0 +
1

2
q̇T (t)Mq̇(t)

where the coefficient α(t) of the rigid-body motion
q(t) = α(t)q satisfies the rigid-body differential equa-
tion:

Mqα̈ + Dqα̇ = F‖

which a 3N copies of the same equation, which can
be reduced to a single equation by projecting on qT .
The parallel force depends on the ratio of the inertial
and the resistive force, as we have seen in the instan-
taneous case. The total energy supplied to the system
is larger, as energy is dissipated through the damping
term D. The total power P transfer as result of the
input force is given by:

P (t) = FT (t) (q̇(t) + ẋ0)

where F‖ is part of the dynamical rigid-body equa-
tion, and the remainder F⊥ appears in the instanta-
neous deformation equation for x0:

P = FT
‖ q̇ + FT

⊥ẋ0

Inserting the equation of motion for q and the bal-
ance equation for x0 in the power equation:

P = q̇T Mq̈ + xT
0 Kẋ0 + ẋT

0 (Mq̈ + Dq̇) + q̇T Dq̇

= Ėtotal + ẋT
0 Fintern + q̇T Dq̇

where the last term is the classical dissipation term.
The internal force Fintern is the rigid-body response
to the applied force. In a sense, it is the internal
balancing force, which makes the not-so rigid body
act coherently. In the absence of an external force,
Fintern = 0. Due to the internal deformation, the
second-order system turns into a higher-order system,
where the order 2n + 2 is determined by the number
of modes xn taken into account.

8 Conclusions

In this paper, we started out with a number of rigid-
body motions which occur in actual situations, such
as a constant acceleration due to a constant force, and
a constant velocity under friction. In all these cases
a static deformation occurs. The static deformation
has been treated as the starting point of the internal
dynamics, such that only the vibrations occur which
are actually driven by the rigid-body, or operational,
motion of the system. Each higher-order term in the
expansion arises from taking into account the inertial
effects of the dynamics of the previous term, yielding
a fast convergence. This is the basis for a model
reduction, which allows one the study complex dy-
namics of FEM systems, with arbitrary input, with
a limited number of degrees of freedom, without in-
troducing model bias, beyond the choice of operation
conditions, such as the position of the fixtures and
desired operation trajectories.
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