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Outline

I n this thesis we establish the relation between covariant field theory and light-front

Hamiltonian field theory. The results of covariant field theory can be derived in a light-
cone time-ordered! formulation despite the formal difficulties that exist in the framework where
the time-direction is chosen light-like. Our results put some of the features of light-front field
theory in a different perspective.

Chapter 1: Introduction

We give a general discussion of field theory and argue that the Hamiltonian formulation
of field theory is more appropriate for the study of bound-state problems. We give a simple
example to illustrate the special features of light-cone time-ordered perturbation theory.

Chapter 2: Partial differential equations and light-front field theory

In this chapter we examine some properties of the partial differential equations and the
consequences of the choice of initial conditions on the light-front for field theory. Two important
results are discussed: non-uniqueness and singular solutions. The null-solutions, which are
solutions that vanish at the light-front, are explicitly constructed for the Klein-Gordon equation
and the Dirac equation. The complete solution of the partial differential equation with given
boundary conditions can be determined up to such null-solutions. It is also shown that the
existence of singular solutions makes the set of integrable solutions smaller on the light-front
than on any other hypersurface, because the singularities propagate in light-like surfaces. These
problems make quantization of light-front field theory and the consequent renormalization
difficult.

Chapter 3: Equivalence of light-front and covariant field theory

In this chapter we discuss the relation between the standard covariant quantum field theory
and light-front field theory. We define covariant theory by its Feynman diagrams, whereas light-
front field theory is defined in terms of light-cone time-ordered diagrams. A general algorithm
is proposed that produces the latter from any Feynman diagram. The procedure is illustrated
in several cases. Technical problems that occur in the light-front formulation and have no
counterpart in the covariant formulation are identified and solved.

1We talk about light-cone time, since time is a direction and is defined in the affine space. The light-cone
time direction lies on the light-cone. The hyperspace perpendicular to light-cone time is the light-front.
Our states and our Hamiltonian are formulated with variables on this light-front and hence we use the
term light-front Hamiltonian.



2 Outline

Chapter 4: A different approach to dimensional regularization

We have combined elements of dimensional regularization, dimensional analysis and differ-
entiation with respect to external variables to a renormalization scheme. The method does
not use regulators and gives finite integrals. The method is manifestly covariant, but designed
especially to be used outside the realm of manifestly covariant theories. In particular, we are
interested in time-ordered perturbation theory. We also discuss some aspects of dimensional
regularization. We apply our method to the nucleon self-energy.

Chapter 5: Renormalization of light-front Hamiltonian field theory

We propose a regularization of light-front field theory which does not make a distinction
between transverse and longitudinal coordinates. It consists of a subtraction of low order terms
in the Taylor expansion of an amplitude with respect to external momenta, similar to the
regularization in the BPHZ-scheme, which has some advantages that do not exist in covariant
field theory. Instantaneous parts and other longitudinal singularities are automatically removed
irrespective of their explicit form. We argue therefore that these parts are meaningless. The
local counterterms are equal to those of covariant field theory. We demonstrate the method in
a number of examples, recovering the covariant results.

Chapter 6: The relativistic Hamiltonian in the bound-state problem

We discuss the relation between covariant field theory and Hamiltonian field theory and
show that the Hamiltonian corresponding to a local Lagrangian density has nonlocal phase-
space factors in the interaction. We apply these results in the weak coupling limit to scalar
electrodynamics and derive the relativistic version of the Coulomb-Schrédinger equation. In
the light-front formalism we analyze the higher Fock state contents of a bound state and find
that the higher Fock states are suppressed kinematically.



Introduction

T his thesis deals with some aspects of the Hamiltonian formulation of quantum field
theory, in particular light-front Hamiltonian field theory. Light-front Hamiltonian field
theory uses a light-like direction as time direction.

Since the discovery of particle creation and annihilation, field theory is considered the correct
formulation to describe quantum-mechanical processes at small scales. In field theory separate
degrees of freedom are expressed in the field strengths of different fields at a point. The field
strength at a space-time point can only be defined in a formal manner, but the notion of a point
is relevant, since, if we go to higher and higher energies, we will look at smaller and smaller
scales approaching a point scale. However, the field strength at a point remains an enigma:
the impossible measurement. Still, it seems that nature uses this point scale since almost local
intermediate states, such as extremely heavy particles in the intermediate state, contribute
finite amounts to the low energy states (e.g., the heavy Higgs particle which generates the
fermion masses).

From a theoretical viewpoint the local theory, which contains only interactions among fields
at the same space-time point, has many advantages: a point is relativistically invariant and
therefore a local theory can be expressed independently of a coordinate frame. A quantum
field theory is usually derived from the canonical commutation relations which are the natural
extension of the quantum-mechanical commutation relations of systems with a finite number
of degrees of freedom. The corresponding degrees of freedom in field theory are ¢(&) and
0t d(Z), where ¢(Z) is the field strength of the field ¢ at (¢, Z):

[0(Z), p(&)]i=0 = 0,
[0:6(Z), 04p(Z )]t=0 = 0,
0:d(7), §(F Nomo = iH(E - F). (1.1)

The commutation relations link space-time functions with Fock-space operators. The degree of
freedom is the field at a point, and we label the degrees of freedom by their space coordinates.
It is hard to deal with a theory where at each space-time point fields are created and annihilated.
If we use each space-time point as a separate point we can deal with scattering theory at finite
orders in perturbation theory in a straightforward manner. At a finite number of space-time
points specific interactions occur, and particles propagate freely between those points. The
propagation amplitude is given by the expectation value of creating a particle at one point and

3



4 1. Introduction

annihilating it at another and the amplitude is determined by the phase rotation due to the
action of a straight line trajectory between the two points. A particle is labeled by a coordinate,
and although we are far from the classical notion of a particle we still use its coordinate in field
theory. The Feynman rules tell us how to calculate a scattering amplitude perturbatively.

The concept of a state is obscured in this picture. Asymptotic scattering theory can be
viewed as time-independent perturbation theory; in-states and out-states are free states which
are projected on the nth order approximation of an eigenstate which results from an analytical
expansion of the eigenstate in the coupling constant. If the coupling constant is zero the
eigenstate is the free state, and if the coupling constant is nonzero the free states form only
a basis for the true eigenstate and other free states mix with the initial state. However, in
the scattering amplitude these intermediate eigenstates of the interacting theory are no longer
manifest. The idea of an interacting eigenstate is obscured by the space-time approach and in
the asymptotic in-states and out-states.

In order to deal with bound states we need to know more about the interacting eigenstates.
Scattering theory, which uses free states as asymptotic states, gives us only indirect information
about the bound state: “the bound state is a pole in the S matrix.” A bound state can only be
an interacting eigenstate, therefore in the free theory a bound state cannot exist. In scattering
theory the scattering of constituents which form the lowest Fock component of the bound state
is considered. The concept of scattering is extended to a kinematical region in which scattering
cannot occur; the particles are off-shell. If other particles contribute to a nontrivial content
of the bound state we can only hope to gain some information about that. For example,
in charged states in QED we find that the infrared divergences tell us that we neglected the
possible presence of soft photons in the asymptotic states. If these soft photons are included,
the theory will become finite. If soft photons need to be included in the asymptotic states we
might expect they are a nontrivial part of the bound state.

A bound state is a stationary state. A stationary state is a state which changes only its
phase with time. At least in nonrelativistic quantum mechanics this is the case: the eigenstates
of the Schrodinger equation are stationary states. In relativistic quantum field theory we lack a
framework in which such an equation can be formulated. The Bethe-Salpeter equation comes
closest to such an equation, starting with a scattering kernel it finds the fixed point of successive
off-shell to off-shell scatterings. Given the constituents it produces a pole in the S matrix.

Any nontrivial content of the bound state, such as mass, energy or spin, carried by the
exchanged particles cannot be recovered in the Bethe-Salpeter formalism. Since that would
demand for intermediate particles to be included in the “asymptotic state”. Therefore the
Bethe-Salpeter equation becomes useless for stronger interactions. The sea particles which
are an important part in the analysis of deep-inelastic scattering of hadronic bound states are
awkward to handle in the Bethe-Salpeter formalism.

In order to establish a framework in which we can formulate a bound-state eigenvalue
equation we have looked at time-ordered theories, where in each intermediate state we have
a specific Fock-state content, or particle content. A critical advantage of light-cone time-
ordered theories is the suppression of higher Fock-states due to the spectrum condition which
restricts the longitudinal momenta of the particles to a positive fraction of the total longitudinal
momentum. In order to make sense of such a formulation we have looked at its connection
with covariant field theory. We shall show that the same results as in covariant field theory
can be obtained in a time-ordered, or Hamiltonian, theory.

One major problem of finding a stationary eigenvalue equation is the divergences. The
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expressions in the perturbative expansion are ill-defined when two, or more, interactions occur
at the same space-time point. In a local theory infinites occur frequently since it allows for
a continuously infinite number of intermediate states, each contributing only an infinitesimal
amount but adding up to an infinite contribution. In covariant field theory renormalization
of the infinities, such that one ends up with a finite physical theory, is well established, but
in the time-ordered theory only ad hoc methods exist. We will consider how dimensional
regularization can be made applicable to time-ordered theories. We have also designed a
renormalization scheme which maintains covariance in light-front Hamiltonian perturbation
theory. Covariance guarantees the locality of the counterterms which in the noncovariant
framework of time-ordered theories can only be inferred indirectly.

The infinities are the result of switching on the interaction; the interaction generates the
masses of the particles and the screening of charges. In order to obtain results in the interacting
theory we have to make an enormous detour from free states of the free theory to free states
with large, regularized, masses and small, regularized, charges of the interacting theory, to finite
free states, and finally, to finite interacting states. It would be desirable to have a method in
which the finite free states of the interacting theory will lead immediately to the finite effects
of interaction on the free states of the interacting theory. However, such a method does not
exists.

The usual manner in which a Schrodinger equation is obtained from field theory consists
of a number of steps. Starting with the Bethe-Salpeter equation, one removes the dependence
on the internal energy variable by: heavy mass limit, quasi-potential approximation, Wick
rotation (which treats the time variable as a space coordinate) or a vierbein construction
(where only coordinates orthogonal to the four-velocity are used as internal degrees of freedom).
Afterwards, one integrates out the degrees of freedom associated with the exchanged particles,
usually restricted to one or two particles and often only those that are exchanged between two
constituents. Finally, one has a linear eigenvalue equation that can be solved with standard
techniques under the proper approximations. The integrated degrees of freedom result in a
nonlocal potential between the constituents.

In the sixth chapter we shall derive the Coulomb-Schrdodinger equation from the lowest
nontrivial Fock-state truncation of the time-ordered field theory. The truncation is the only
approximation in this Hamiltonian formalism, while in the covariant formulation one has not
only to deal with the awkward relative time coordinate but also with the antiparticle components
which are present in the covariant propagators.

We argue that our mechanism of binding can be extended. Therefore one has to keep the
Fock state picture intact but instead approximate the kinematics. We shall show that such a
study of binding in feasible.

1.1 Conventions

We use wave equations and time-ordered theory. Therefore, we will use the Minkowski metric
in this thesis. In the cases that we use the Euclidean metric we will state this explicitly.

T = (.Z‘O,Jil,JUZ,Z‘S); $2 — (320)2 _ i,»Q — (1‘0)2 _ (1‘1)2 _ (1‘2)2 _ (1,3)2. (12)
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The light-front variables, 2%, are combinations of z° and z3.

1
+ 0, .3
T =1 =— (2 £a7), 1.3
with the metric tensor: gt~ =g~ " =1; g¢'! = ¢g?2 = —1 and all other entries zero.
2?2 =2 — (1) — (2®)? =222 — 2% =22T2” — 2%, (1.4)

In Euclidean space these two directions are orthogonal, but in Minkowski metric these vectors
are light-like. The length of a light-like vector is zero in Minskowski metric. Therefore, given
the length and the direction of a light-like position vector, the position is indefinite. Since
T = x_, we will use only the contravariant vectors, with the upper indices, in order to avoid
confusion throughout this thesis. We define the time-direction in the 21 direction which makes
p~ the time-evolution operator, the Hamiltonian, of our system.

Note also that the gamma matrices have the properties one would expect:

1 _ _ _
== 0"£), =0 YT+t =2 =2 (1.5)
V2
For the inner-product of a momentum and gamma matrices we will always use the Lorentz
metric: ¥ = YOk% + f = v k= + 4"kt + . - k1. The v* matrices are singular. This is
one of the features which make light-front field theory special, and the quantization of fermion

fields tricky. Our conventions are the same as those of Mustaki (Mustaki, 1990; Mustaki et al.,
1991).

1.2 A simple example

In order to give some flavor of the subject, we discuss the scalar one-loop self-energy in ¢3
theory in this section. See fig. 1.1. This diagram is calculated in most text-books on field
theory and plays a central role in many discussions. The covariant amplitude is

2y 92 1
F7) = 2(2m)4 /d4k((p — k)2 —m?2 +ie) (k2 — m? +ie)’

(1.6)

A factor g occurs for each vertex, a factor (2m)~! for each integration and a factor 3 for
symmetry. The diagram itself is divergent. However, we can renormalize the amplitude and

calculate the finite part. (Details of the calculations can be found in sect. 4.11.2.) The result

is
2 _ Am?2 2
1— T rctanhy [ 2 ). (1.7
2 P2 — 4m?

The covariant diagram sums two specific processes separated by the time ordering of the two
vertices. We can see this if we look at the propagator, which contains actually two propagators;
one for each pole:

f:

i92
1672

1 1 1 1 (1.8)
p2—m2+ie 2B, \p*—E,+ie p'+E,—ic)’ '
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()
N

%

Figure 1.1: The scalar loop; covariant, forward and backward diagram.

where E, = \/p? + m?2.

If we separate the different poles in the scalar loop, the poles combine only in two cases to a
nonvanishing contribution. One pole must be at each side of the real axis to give a contribution
to the contour integral. The integration over the energy is equivalent to summing all processes
for different relative times between the occurrences of the two vertices. If we integrate over
the energy variable k°, we will have only these two contributions, corresponding to different
time orderings of the two vertices. We denote the two time orderings as the forward diagram:

=y P ! 0o
2(2m)3 4B, 1By (p° — Epy — Ey)’
and the backward diagram:
;2
—1ig 3 1 1
k , 1.10
2@n)? / 1B, 2B (0 By T Br) (1.10)

respectively. See fig. 1.1. The meaning of the backward diagram has been the subject of many
discussions. We see it is necessary to recover a covariant amplitude. The backward diagram is
also referred to as a vacuum diagram or Z-diagram. It is believed to signify the contributions
due to vacuum fluctuations. The particle is annihilated by an antiparticle created from the
vacuum. For fermions it is also said that the vacuum is suppressed by the Pauli principle due
to the presence of extra fermions. However, this does not explain the same diagram for bosons.

The backward diagram is absent in light-front perturbation theory. If we introduce the
light-front variables: p* = (p° £ p3)/+/2 and integrate over the light-front energy k= we will
only find one contribution:

_iQQ /p+ +42 1 L
dk™d kJ_ - . (1.11)
3 Tk )kt k)2 im? K2 im?
2(2m)3 J, 4(pt — kH)k (p, _ (pé(pﬁi)ki) _ A )

The integration domain in the longitudinal variable is determined by the value of the longitudinal
momenta for which there is a pole on each side of the real axis. The integral gives the covariant
result (see sect. 5.3.1). This is a very subtle result. The covariant propagator can be written
in light-front coordinates:

1 1 O(p™) 0(—p*)

—_—— = —— +
2 _ 2 ; + 2 m?2 . 2 +m?2 .
m= + i€ 2 __p _ . p
p T\ p — Spr— Tie pT — o —ie

(1.12)
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The residue integration restricts the four-dimensional integration to an integration over a three-
dimensional mass hyperbola. This integral is equivalent for light-front and ordinary coordinates;
variable substitution relate one to the other. However, in light-front coordinates we are able
to combine the results from the different residues.

The different contributions give the same expressions but the domains in k& space are
different. The (standard) forward diagram gives the integrand integrated over the domain
kT € [0,00), while the (standard) backward diagram gives the opposite contribution in the
domain kT € [pT,00). The net result is a forward diagram in the domain k™ € [0,p™]. If we
look at the light-front variables in standard coordinates we will see that the integration over k3
is not over the full space but over a domain where a parabola is cut from the three-dimensional
space:

Er<pt = B 4m?<2ph)?-2v2pti?. (1.13)

It seems that the backward diagrams are incorporated in light-front field theory as the restriction
of the kinematical domain. The forward part of the propagator has the opposite behavior for
large momenta as the backward part. Light-front field theory uses this feature and subtracts
the two contributions in an efficient way such that only the forward parts remain. In chapter
3 we will see that this holds for any part of an amplitude expressed in Feynman diagrams.



2

Partial differential equations and light-front
field theory

I n the theory of partial differential equations there are two major research areas: the

study of the local solutions and of the global solutions, respectively. The approaches
for both are quite different. The global theory integrates the differential equation and tries to
analyze qualitatively the behavior of the solution. The results might differ depending on the
space in which the initial conditions are defined. Apart from general mathematical interest and
the construction of counterexamples the global theory is necessary to check the stability of a
numerical algorithm used to solve a partial differential equation.

The local theory only looks at the behavior around a point. It uses an analytical expansion
around that point. Or, more general, it refers back to the analytical expansion. The Cauchy-
Kovalevskaya and the Holmgren theorems are general results (Hérmander, 1963) in this case.
Field theory is more closely related to the local theory.

In field theory we feel that the behavior at far distances should not interfere with the
outcome of an experiment. Therefore specific behavior of the initial conditions at far distances,
as imposed by insisting that the initial conditions should be in a specific mathematical space,
are not strictly imposed in a physical model. Also, quantum field theory is only properly defined
as perturbation theory therefore we will seldom recover some of the striking features of the
classical nonlinear wave equations which lie at the basis of the field theory. The nonlinear
terms in the Lagrangian poses many problems upon quantization. Most of these problems
are circumvented if we consider these nonlinear terms as perturbations. The global effects
which have found their way in quantum field theory as topological effects, specifically in gauge
theories, are rarely observed experimentally.

To define the perturbative expansion in quantum field theory we do need some knowledge of
the free field theory which includes the knowledge of the differential equations which determine
the free solutions. This is necessary to define the propagators which relate the fields at different
space-time points. There turn out to be some subtle differences between the standard case
where the initial conditions are defined on an equal time surface and initial conditions defined on
the light-front surface, or null plane, z+ ct = constant. These differences manifest themselves
in the quantization procedure and at a technical level when we try to use operators which have
singular behavior.
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In this chapter we study the classical free wave equation with the light front as initial
surface. Part of the results can be found in the mathematical literature, some explicit solutions
are derived here.

The quantization of a field theory requires some basic knowledge of the classical theory.
First, the knowledge of the independent variables with which a state, a specific field config-
uration, is described. Second, a Hamiltonian which governs the dynamics of the system: the
time-dependent behavior. The Hamiltonian gives the evolution of the state in time and so
indirectly the evolution of all physical quantities. If we cannot determine either, we have a
problem. It turns out that classical light-front field theory, which corresponds to the classi-
cal wave equation with light-like boundary values is ill-defined in both ways in a mathematical
sense. This makes it doubtful whether a consistent canonical quantization exists. The problems
people encounter upon quantization of light-front field theory are often considered as practical
problems, but more likely they are the signatures of an ill-defined mathematical problem.

2.1 Motivation

Relativistic covariance is a necessary property for a realistic description of many physical sys-
tems. Quantum field theory (QFT) offers a formalism that describes interacting particles in a
covariant way. Light-front field theory (LFFT) has been proposed as a version of QFT that
has advantages over the usual formulation. The main point is that the vacuum has a simpler
structure in LFFT. Many results in LFFT have been derived by methods which work in ordinary
QFT, or by plain application of results of ordinary QFT in LFFT. However, in the light-front
formulation problems arise that may invalidate some of these results. In this chapter we go
back to the classical theory of partial differential equations where some of these problems are
already present:

e Boundary conditions on a light-like surface don’t give a unique solution.

e There exist singular solutions with singularities on the light front. (The singularities are
of a higher order on the light front than on any other hypersurface.)

These problems become important if perturbation theory and renormalization are consid-
ered. Then we are interested in uniqueness, completeness and the behavior of singular solutions
of the field equations.

The particle interpretation of QFT hinges on the possibility to construct wave packets that
are normalized. On the light front, z+ = 0, such a wave packet cannot be constructed in an
invariant way!, because a wave packet has to be independent of the 2~ coordinate (Nakanishi
& Yamawaki, 1977).

The ordinary causal propagator is singular on the light-cone, so it is singular on a line in
the light front (Kogut & Soper, 1970) from which we wish to "propagate”. Therefore this
propagator is ill-defined for a Hamiltonian theory and cannot arise from quantization on this
surface. Another approach is to construct a propagator out of independent free fields only
(with the spectrum condition p* > 0). This gives a non-covariant propagator (Yan, 1973a).2

1This problem is different from the inconsistency between particle interpretation and localization as
noticed by (Newton & Wigner, 1949).

2The interaction Hamiltonian also has extra terms in this case, because the eliminated dependent fields
contained interaction, which has to be included.
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Also, one can let the propagator satisfy the constraint, that is: the non-propagating part is
local in the time direction (Hagen & Yee, 1976) (which is only constructed in the case of a
massless theory). Different requirements lead to different results, so either the demands are
inconsistent, or there is an underlying principle which connects the approaches. We conjecture
that the different definitions follow from the singular nature of the propagator and the ambiguity
should be resolved by requiring covariance.

2.2 Relevant theorems

The mathematical theorems about partial differential equations (PDE) stand as unrefutable
facts. Nevertheless, their connection with QFT is unclear. Many of the theorems constitute
nothing but a formal proof of existence.

Most of the theorems and proofs can be found in the books by Hrmander, e.g., (Hérmander,
1963). The mathematical theory of partial differential equations examines some of the strange
effects which might be expected if we use a light-like surface as boundary on which we define
the initial field (the initial surface). A light-like surface is the characteristic surface of the
wave equations we are considering. Here we state some of the relevant theorems, but for
proofs we refer to the mathematical literature. In this chapter we will look at some aspects of
characteristic partial differential equations more closely.

The solutions of differential equations have a number of special properties, often indepen-
dent of the fact whether we deal with massive or massless fields:

Theorem : The Cauchy problem is non-unique

It is possible to have a solution which vanishes at the light front (together with an arbitrary
number of derivatives) which is non-zero in the half-space we are considering. For the massless
case this is trivial: simply take any function of the " -coordinate only, which vanishes at the
boundary. For the massive case it is more complicated, but still true. So it is fundamentally
impossible to determine the evolution of a solution if one knows it at a light front, since one can
add any null-solution (i.e. a solution vanishing at the boundary), unless one imposes additional
conditions. This is as true for the Klein-Gordon equation as it is for the Dirac equation.
Theorem : Singular solutions exist on the light-cone

If a PDE has a singular solution, the singularity propagates in a light-like surface. It only
has to satisfy a supplementary condition P*¢ = 0, where P is the differential operator along
the light-like direction in the light-front, which shows the two features of these solutions:

1. The condition on the eigenvalue p™ = 0 allows more solutions than only the vacuum
(namely all kinds of singular solutions).

2. Since we don't know how to interpret these states, normalization and regularization
require more caution.

Theorem : Every PDE with constant coefficients has a Greens function
A Greens function G(R") satisfies:

P(D)G(x) = | Y ayd'd’ + ) b0 +c| G(z) =6"(x) (2.1)
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A Greens function is not necessarily a propagator with the right properties (e.g. CPT). This
theorem only tells us that formally we can construct a solution.

A Greens function allows one to give symbolically the evolution of a field, a method which
became more appreciated with the functional methods. However, the Greens function doesn't
say much about uniqueness of the evolution of a solution.

2.3 Null-solutions

Null-solutions are defined as the non-zero solutions which vanish at the boundary z+ = 0.
The existence of null-solutions is not apparent in momentum representation, since there it is
related to the analytical continuation of the characteristic relation: p?> — m? = 0. However,
in configuration space it follows easily from invariant solutions of the Klein-Gordon equation,
which are functions of the invariant length only. Let ¢) be an invariant solution of the (massive)
wave equation, then it is a function of the invariant length s. So assume a solution v (s) where
s=2x 2~ — (2')? — (2?)2, then we can construct a set of solutions, which are zero on the

light front 7 = 0 namely:
(OF)"h(s) = 2aF)"p ™ (s), (2.2)

which is zero on the light front if ¢ is not singular in s = 0. But we will see that the space of
null-solutions is even bigger than this.
One of the solutions which satisfy the wave equation, (O +m2)u = 0, is the Bessel-function:

© (_L2.4 p—)
Jo(m Wx_)EZM

=0

i3l ’ (23)
which is an analytical function on the whole space (an entire function). We can extend this

trivially to include transverse coordinates by multiplying the Bessel-function with a plane wave
in the perpendicular coordinates, and changing the argument of the Bessel-function slightly:

Jo(\/k2 +m2 V2xt =) elhtme, (2.4)

which is again a solution of the wave equation. Instead of an analytical solution one can also
use a bounded (L}, .(R*)) solution, which is given by: (0(z")0(xz~) — 0(—a™)0(—x7))Jo,
with Jy as above. We can also construct an invariant solution, since we can use any Fourier-
transformable function in the perpendicular coordinates. This invariant solution is: m2 =J1(my/s).

A set of null-solutions (IV,)) is given by:

00 (L1, 2Vity ()it (p—)i — v
Ny (p,zt,27) = Z ( 2ui')I‘(i j_ Vl—l)( ) = ( :c—+) J(uV2ata—), (2.5)
i=0 :

where = \/k? + m?2. Again we can include any function in the perpendicular coordinates,
since the (z™)” factor causes the functions to vanish at 2™ = 0 for v > 0 . These solutions
can be related to each other by step operators: PT, P~, (v & Z7)

V3 V3

2 2
PtN, = —iY20tN,=N,.1, P N,=—i“29"N,=N,_1, (2.6)
t 1t
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(with the exception: P~ No(zt,z~) = Ni(x~,zT), where the variables are interchanged,
which shows the special nature of v € N.) The functions, N,,, where v are integers, together
with those with interchanged arguments (N)) can be related to plane wave solutions. The
solutions form a basis for an analytical expansion on 27 = 0 and 2~ = 0 around the origin.
Therefore, this expansion on a finite domain can be expanded in plane waves, since they both
form a basis for smooth functions on a finite domain. If one first restricts oneself to a countable
basis, the convergence will be bad. In the "{N,, N/ }-basis" only half of the solutions have
non-vanishing boundary values. So one can conclude that the light-front boundary determines
only half of the degrees of freedom.

The existence of null-solutions is related to z-boost symmetry. If we assume a solution
analytical in 2+ and 27, we can construct a whole set of new solutions which also satisfy the
Klein-Gordon equation; If u is a solution then any sequence {b;}>, will lead to a new solution
(not bothering about convergence):

U= Zaij(afr)i(x*)j = 0= Zaijb(i—j)(lﬁ)i@?i)j. (2.7)

This is the massive analogue of the two dimensional massless case where a solution is any
function u(x*,27) = f(x™) + g(z™).

2.3.1 Null-solutions of the Dirac equation

Once the null-solutions (V,'s) for the Klein-Gordon equation are known then those for the
Dirac equation follow relatively easily. We just project these null-solutions on spinor-states:

u=(—ig+m)N = (—ig —m)u=—(0+m?)N =0. (2.8)

But we must be cautious with the constraints. Since not the whole Dirac equation involves
the zt-time derivative, we have additional relations which have to be satisfied?®. Formally
implementing the constraints on the free Dirac equation, where one assumes (07)~! to be
a proper one-to-one operator on the space of physical solutions, leads to two independent
" Klein-Gordon" fields (%'y*'ﬁw =)™ fields) distinguished by their spinor directions.

This hardly changes the construction of the null-solutions for the Dirac equation, because
then one just has to restrict the projection on the independent part only: (N, — %77’Y+Nu)-

2.4 Singular solutions

The wave equation can have singular solutions. These are associated with shock waves or wave
front solutions. One important feature of these solutions is that the singularities propagate
in a characteristic, or light-like, surface. This has an important impact, because if we are
constructing a space of solutions we like to take only integrable solutions. These solutions can
be integrable on any ordinary hypersurface, but not on a characteristic surface.

3Its analogue for the Klein-Gordon equation is unfamiliar, but since the Klein-Gordon equation is
a second order equation, one has to give u and 0~ u at the boundary, which leads to a consistency
condition: 9T[0~u] = (A — m?)u (after quantization the particle interpretation replaces the second
boundary condition).
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Compare this with the massless case: a solution is u(z*,z7) = g(z) + f(z~). One
can take for g(z™) any singular solution, so as a special case one can take singular solutions

which are integrable on ¢ = 0 over z: g(HT;) but not integrable on 2+ = 0 over ™, for

instance: g(z") = (27)* with —1 < a < 0 are L but not £!_. The comparison between the
massless case and the massive case goes further than one might expect at first glance: for any
(differentiable) solution of the massive wave equation there exists an analytical expansion that
has the leading terms g(z™) and f(x~) (the only terms that survive at boundaries z* = 0
and 2= = 0). This doesn't mean we have something " going with the speed of light”.

The massive case is similar. Let's assume a singular solution of the form (a < 0):

wxt o, %) = (2N)U(x™, L) + less singular terms. (2.9)

The Klein-Gordon equation gives a recurrence relation between terms of different order, where
we get a condition for the leading term:

O+mHu=0 = 9TU=0. (2.10)

These solutions are also of the form N, containing a Bessel-function, but with v < 0. (J,
existsforallv : v<0 A v¢gZ)

This aspect is related to the (group)-structure of space-time: all points*, except those on
the light cone, are smoothly related by Lorentz transformations to each other (the light cone
is invariant under transformations). If one starts with one smooth solution (like a plane wave)
then all other solutions can be obtained by Lorentz transformations, so they are also smooth
except at the light cone against which solutions get "crushed” with boosts approaching the
velocity of light. Remember that the idea of a Lorentz metric originally comes from the wave
equation, and that the distance is zero in Minkowski metric on the light cone with respect to
the apex of the cone.

Although one can treat the space and time coordinates in many respects in the same
manner, there remain subtle differences between the two. This can best be illustrated by two
features:

1. On a space-like boundary one cannot have proper boundary values to guarantee existence
and uniqueness.

2. APDE as (92 4 02 — 92 — 07)u = f cannot be solved (generally) with Fourier-Laplace
techniques, because it has two "time"” directions.

2.5 The causal propagator

The causal propagator, or Feynman propagator, is derived in the literature in many different
ways with many different argumentations. The propagator expresses the effect of a source. If
a source is located at the origin it will tell us how a solution of the wave equation propagates
outward. In fact, this is not the only option. A solution can also propagate inward and let the
source act as a sink. A propagator, or Greens function, does not even have to be spherically
symmetric.

4This is of course true for each domain within the forward light cone, backward light cone, and outside
the light cone separately
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In this section we derive the causal propagator in configuration space from the main condi-
tions; spherical symmetry and causality. This derivation is short and simple, and the result is
expressed as a boundary of a holomorphic functions. In the later chapters we will refer to this
result.

Since the propagator is not unique we have to impose extra conditions. Spherical symmetry
means that the propagator is only a function of r and not of z,y and z separately. Causality
insures that all particles, denoted by their wave number, have a positive energy. The negative
energy solutions approach the origin from negative time direction (inward), and the positive
energy solutions leave the origin in a positive time direction (outward).

Bogoliubov and Shirkov (Bogoliubov & Shirkov, 1959) calculate the causal propagator by
explicitly calculating the transcendental functions in each of the space-time domains. They
find:

D(5) = 4 66~ 000) (5 nvs) ) = 01-9) (== Kty )| 20
where

Ki(2) = ng(_)(—iz), (2.12)

H7G) = J(z) —iN(2). (2.13)

The causal propagator is an analytical function of the invariant length. The delta function is
the imaginary part of the pole in the Hankel function. In momentum space causality restricts
the e prescription uniquely:

1 1 1 1
_ - . (214
PP —m?+ic 2/ +m? (po PP +m? +ie p”+\/1mi€> =

The pole for the positive energy solutions p® = /p2 + m?2 lies inside the integration contour
for the Fourier transform of the propagator for times greater than zero, the opposite is true for
the negative energy solutions. So we see that the propagator is finite for positive imaginary
values of p2. The Fourier transformation of an analytical function of p? is an analytical function
of s in the opposite half plane, since

() = P f(p- LT Lop) = PP, (2.15)

where L is an arbitrary Lorentz transform, which does not alter an invariant solution. Therefore
the time coordinate has the opposite (Wick) rotation as the energy (0 < ¢ < %7‘(’)2

p° = )Y, (2.16)
¥ = e Y. (2.17)

From the two invariant solutions of the wave equation there is one combination that exists

in the lower half plane: the second Hankel function H{f), therefore it follows that

—m

- m}]{_)(m s — i€). (2.18)

D%(s)
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This result coincides® with Bogoliubov and Shirkov.

2.5.1 Uniqueness for a ¢t = 0 initial surface

The discussion above makes one wonder why these problems do not occur in the usual case.
In the ordinary case, where one uses an instantaneous hypersurface as initial surface, one
can easily prove the uniqueness of the solutions of the field equations. If we know all time
derivatives of the field on the initial surface then we can continue the solution into the half
space by a Taylor-expansion.

Uniqueness of a solution is equivalent to the fact that vanishing boundary conditions give
a zero solution in the half space, since if two different solutions exist with the same boundary
values, the difference is also a solution, which has vanishing boundary conditions:

u=0 , Ou=0 and (9? —A+m?)u=0. (2.19)
Now we can construct higher derivatives:

Pu=(A-m>Hu=0
Bu= (A —-m*)ou =0 etc. (2.20)
Ofu = (A —m*)0}u= (A —m?)(A—m?)u=0

For the Dirac equation the proof is similar: the main condition for the uniqueness is the
existence of an inverse of the group element or gamma matrix which is associated with the
time derivative ((7°)™! = 7%). Note that in the case of light-front dynamics, where z T is
the "time", the corresponding gamma matrix, v, is singular, so it has no inverse (277" =

770+ 9% + {7720 = 0).
2.5.2 Propagators and the ¢ e-Prescription

In Fourier-transformed® space it is more easy to construct homogeneous solutions and Greens

functions, since the differential equation transforms to a polynomial in several variables (e.g.
2

p? —m?).

Propagators are Greens functions with specific boundary conditions (or discrete symme-
tries). The difference between different propagators is a homogeneous solution, which is the
result of different regularizations” (ie prescriptions). These homogeneous solutions belong
to the span of the plane waves. The null-solutions are also homogeneous solutions, so the
propagators are not uniquely determining the evolution of the field.

In the Fourier-transformed space, non-uniqueness is related to the existence of a homoge-
neous solution for p* — 0 and p~ — Zoo. This looks more simple than it is, because one
must perform the analytic continuation of the variables in a complex domain and consider areas
of convergence of the Fourier transform.

5Some authors use the opposite branch of the square root and the first Hankel function which lead to
the same result.

6 Actually the transformation to be considered is more general than the Fourier transform only, since
many solutions of PDE’s don’t have a Fourier-transform, but a Fourier-Laplace transform in some complex
variable with the same symbolic calculus (see for instance (Leray, 1953)).

"Different regularizations are the result of different particle interpretations, for instance ”the positron”
and ”the backward going electron” as, respectively, interpretations of the retarded and the Feynman
propagator.
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Equivalence of light-front and covariant field
theory

I t has often been stated that time-ordered perturbation theory is equivalent to covariant

perturbation theory. The work of Dyson and Wick constitutes the only direct proof of
this statement, and even this proof is rather formal. It is formulated in terms of creation and
annihilation operators on a Hilbert space, although there is not a proper Hilbert space at the
basis of field theory.

In fact, only the formulation of time-ordered perturbation theory as given by Weinberg
(Weinberg, 1966) is equivalent to the covariant perturbation theory. Weinberg introduces
some ad hoc phase-space factors which were not present in earlier formulations. He motivates
these factors by covariance, but this cannot truly account for their presence.

Because the light-front field theory is plagued by conceptual problems we found it a useful
exercise to derive the light-cone time-ordered perturbation theory from covariant perturbation
theory. It turned out to be a bit more than an exercise. Many technical problems had to
be solved before we could say that both expansions are equivalent mathematical expressions.
Along the way we encountered many of the ambiguities that plague light-front perturbation
theory. In our different approach we are able to shed some light on these problems, and in
some cases covariance made us favor a specific treatment of an ambiguity.

In this chapter we deal with the problem of equivalence of covariant and light-cone time-
ordered perturbation theory. After some simple examples to illustrate our method we give a
discussion of the technical problems we encounter. The general proof is the last part of this
chapter.

3.1 Introduction

Dirac's paper (Dirac, 1949) on forms of relativistic dynamics opened up a whole field of
investigation: the study of different ways of quantizing and the relationship between different
forms of dynamics. Three forms were identified, the instant form, that corresponds to ordinary
time ordered theories, the point form, that will be of no concern to us here, and the front
form, where the dynamical variables refer to physical conditions on a plane advancing with

17
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the velocity of light. (Such surfaces are called null planes or light fronts.) The latter form
has the advantage that it requires only three dynamical operators, “Hamiltonians”, the other
seven (kinematical) generators of the Poincaré group containing no interaction. The other
advantage noted by Dirac was that there is no square root in the Hamiltonians, thus avoiding
the degeneracy of the free field solutions. (Particles and anti-particles cannot have the same
kinematical momenta.)

Dirac published his paper right in the middle of the period in the development of quantum
electrodynamics, when old-fashioned perturbation theory was replaced by the covariant for-
malisms of Feynman, Schwinger and Tomonaga (Schwinger, 1958). Only much later were his
ideas taken up again'. Quantum electrodynamics held center stage for a long time, not only
for its unparalleled phenomenological success, but also because it functioned as a role model
for many new theories, notably the gauge theories of the weak and the strong interactions.

A new development occurred when the infinite-momentum frame, which had appeared in
connection with current algebra (see e.g. De Alfaro et al. (de Alfaro et al., 1973)), was
proposed by Weinberg (Weinberg, 1966) as a tool in the study of scalar theories, because
it simplifies the vacuum structure in those theories. Not long after Weinberg's paper was
published, it was suggested (Chang & Ma, 1969) that the use of a new set of variables, viz

+7I0+x3 7ixofx 1 9

T 7 x 75 T, (3.1)
would provide the advantages which are present in the use of the infinite-momentum frame.
In such a description, T plays the role of “time”, i.e., the evolution parameter, and the
connection to Dirac’s front-form of dynamics seems immediate. (We will use the terminology
light-cone time (l.c.t.) for this variable.) However, the connection between the rest frame
and the infinite-momentum frame involves a limiting procedure of Lorentz transformations.
Therefore, the equivalence of descriptions in those frames cannot be derived using arguments
based on Lorentz invariance alone.

So the question concerning the relationship between different forms of dynamics remains
difficult to answer. In particular, the connection between the manifestly covariant formulations
and the front form is not yet fully clear. The main reason is that quantization using planes
xT = 7 as surfaces on which the initial conditions are specified—initial surfaces—is beset with
difficulties, that occur already at the classical level in scalar theories. It is a well established
result from the theory of partial-differential equations (Hérmander, 1963) that the Cauchy
problem with an initial surface that contains a light-like direction, is ill-posed. See also chapter
2.

Attempts to formulate light-front field theory in close relationship with covariant field theory
were made by e.g. Chang et al., (Chang et al., 1973), Schmidt, Robertson and McCartor, and
Brodsky and Langnau (Schmidt, 1974; Robertson & McCartor, 1992; Brodsky & Langnau,
1993; Kadyshevsky, 1964; Karmanov, 1988). However, in these approaches one encounters
some difficulties, e.g., the ill-posedness of the Cauchy problem, discussed above, the occurrence
of ill-defined space-time objects like e(z~ — y~)6%(x, — y1) in the operator 1/p*, and the
closely related problem of noncovariantly normalized states (Nakanishi & Yamawaki, 1977)

This disturbing fact might hinder the development of a Hamiltonian formulation of front-
form field theory, if it could not be circumvented. A possible way out was shown by Chang

Leutwyler and Stern (Leutwyler & Stern, 1978) extended Dirac’s analysis to include two more forms
of dynamics. A review on the present situation can be found in (Lev, 1993).
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and Ma (Chang & Ma, 1969) and later by Kogut and Soper (Kogut & Soper, 1970): one may
attack the problem at the level of Feynman diagrams. If one follows that line, one must show
that the usual Feynman rules can be reformulated in terms of the new variables, eq. (3.1), or
their conjugate momenta

T Ay A e R

ﬁap \/§7p,p.

In the present chapter we use their approach. We avoid the problems of quantization and
assume that covariant quantization is correct. Then we show that the perturbative expansion in
covariant terms—Feynman diagrams—is equivalent to an expansion in light-cone time-ordered
terms for theories describing spinless particles. We show in sect. 3.2 how to derive light-cone
time-ordered (l.c.t.-ordered) diagrams from a given Feynman diagram by integrating over the
I.c. energy p~. The general algorithm is illustrated there by applying it to the box diagram.
On the way to the proof of equivalence we encounter questions of regularization. For scalar
theories they are not more difficult to answer than in the manifestly covariant formulation.

The true difficulty lies in theories containing spinning particles. In the case of spin-1/2
particles one encounters the following expression for the free propagator (Kogut & Soper,
1970)

(3.2)

ip+m)  i(Pon +m) iyt Z iu(® ® al®) N iyt
p2 —m2+ie p>P—m24ie 2pt p?2 —m?2+ie  2pt

(3.3)

e}

where p,,, is the on-shell value of the four momentum of the spin-1/2 particle with mass m, if
its components p™, p! and p? are given. The component p;,. is computed from

pP=2pp —pl =m’ (3.4)
and so ) )
_ Pl +m

== 3.5

Pon o (3.5)

The occurrence of the nonpropagating part iy " /2p™ makes the treatment of fermions in
front-form field theories much more difficult, as it gives rise to integrals that are much more
singular than the corresponding integrals in time-ordered or manifestly covariant formulations.
In sect. 3.3 the general case of spin-1/2 particles is discussed. As an illustration a box diagram,
describing two fermions exchanging scalar bosons, is reduced to a set of |.c.t.-ordered diagrams.

The algorithm we propose demonstrates the equivalence of Feynman diagrams to sets of
xT-ordered diagrams in the case of scalar and spin-1/2 fields. (In a way, this is the reverse of
Wick's theorem for time-ordered perturbation theory. The fact that the Cauchy problem with
a null-plane as initial surface is ill posed makes the Wick theorem in front-form dynamics a
strictly formal result. Different interpretations have lead to different perturbative expansions
(Kogut & Soper, 1970; Chang & Yan, 1973).) The popular belief that massive fields do not
have these problems is a misconception. The leading behavior of the fields near the light front
is independent of the mass.

A brief discussion on the extension of our treatment to diagrams with several loops is given
in sect. 3.4.

In the course of our investigation we encountered several technical difficulties. They are
discussed in sect. 3.5, where solutions are given too. In particular we argue that there is
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no problem concerning zero modes, if the p~-integrals are regularized properly, viz, using a
regularization that preserves covariance. But it shows that Feynman diagrams give rise to
terms in the perturbative expansion of the S-matrix that act on p* = (-states.

The next section (sect. 3.6) is concerned with the many mathematical details that were
left out from the preceding sections, lest the main line of argument be blurred.

We close with a discussion of our results and compare them to some of the literature on
light-front field theory.

3.2  Equivalence

Before we proceed with the equivalence proof, we define what we mean by equivalence. By
application of the Feynman rules as ordinarily understood, one obtains manifestly-covariant
expressions? for terms in the perturbative expansion of S-matrix elements, expressed in terms of
four-momenta, masses, spins, and dynamical ingredients: coupling constants. Wick's theorem
can be understood as asserting that the S-matrix elements could be calculated as well in time-
dependent perturbation theory, and as giving us an algorithm to combine the terms found
in the latter case into manifestly-covariant expressions. Thus Wick’s theorem establishes the
equivalence of time-dependent (“old-fashioned”) and covariant perturbation theory.

In this thesis we use the word equivalence in a similar way: each term in covariant per-
turbation theory—Feynman diagram—can be written as the sum of amplitudes that can be
interpreted as terms in a l.c.t.-ordered perturbation series. (In the interest of brevity, we
will use the terminology |.c.t.-ordered diagrams.) In fact, those amplitudes are expressed in
momentum-energy-space quantities, however, it is a straightforward matter to translate them
into space-time language, thus justifying our terminology.

By taking Feynman diagrams as our point of departure, we avoid the problems of front-
form quantization mentioned before. Besides, we also side-step the problem of identifying the
independent degrees of freedom and the determination of commutation relations between them
for a constrained system.

The splitting of a Feynman diagram into |.c.t.-ordered ones results in amplitudes of the
form

1 1 1 1

V v, V. 3.6
P-—H, "P-—Hy, P-—H, (3.6)
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(See also eq. (6.13).) Here, P~ plays the role of the “energy” variable, conjugate to the light-
cone time . Hj is again the energy, however, now expressed in terms of the kinematical
components p* and p, of the momenta of the particles in the intermediate state between
two interactions. The objects V' are the vertices that correspond to the local interactions. As
we will show, expressions of this form arise naturally upon integration of a Feynman diagram
over the minus-component of the integration variable. In general, a number of l.c.t.-ordered
diagrams are derived from a single Feynman diagram. This is directly analogous to old-fashioned
perturbation theory, where n! time-ordered diagrams sum up to one Feynman diagram with n
vertices. However, there exists an important difference: in l.c.t.-ordered theory there are less
diagrams owing to the linearity of the denominator of the single-particle propagator in the p~

2Except for noncovariant gauge terms in a noncovariant gauge like the light-cone gauge.
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variable ) )
= — . 3.7)
_ m2 ; 2 tm2—ie (
mIAe optpm — ]

p2

Consequently, to every propagator there corresponds only one pole in p~ and its location in the
complex p~-plane depends on the sign as well as the magnitude of p*. This property, already
alluded to by Dirac (Dirac, 1949), allows us to pose the condition that in any state p™ > 0.
In the past the status of this so-called “spectrum condition” has remained somewhat unclear.
We shall demonstrate that it follows directly from our splitting procedure and from a natural
reinterpretation of amplitudes, quite similar to the reinterpretation of negative-energy states
as states of positive energy of anti-particles in time-ordered perturbation theory. In fact, our
reduction algorithm shows that the l.c.t.-ordered diagrams have the property that the internal
lines carry positive p™-momentum only. Therefore a better terminology might be spectrum
property, however, we stick to the term spectrum condition, because it is commonly used. In
case one would like to formulate diagram rules in l.c.t.-ordered perturbation theory, one could
use the spectrum condition as a limitation of all intermediate states to states where every
particle has positive pT™-momentum.

The spectrum condition is intimately related to causality. When the causal single-particle
propagator eq. (3.7) is Fourier transformed, one finds that the sign of p* determines whether
one can extend the integral over the p~-axis to an integral along a closed contour in the
complex p~-plane by adding a semi-circle at infinity for positive or negative Imp~—: p™ > 0
corresponds to positive xT-evolution. States with positive energy go forward in time and states
with negative energy go backward in time.

One can argue formally that the spectrum condition holds for all intermediate states. As
a result of the completeness of the physical Hilbert-space each state is a superposition of free
states and thus has a positive p™ momentum. Any particle in a free state with positive p* has
positive energy and goes forward in time. The conservation of kinematical momentum (p*,p, )
restricts the creation of particles in a Hamiltonian formulation, which is not the case in the
equal-time formulation. We will show that this property indeed holds for the l.c.t.-ordered
perturbative expansion.

This result seems rather obvious for spin-0 bosons, however, to our knowledge, its proof
has never before been given. For spin-1/2 particles, there are complications due to the non-
propagating part iy"/2p™ of the fermion propagator. These render the equivalence proof in
this case more difficult.

There is an important point worth mentioning: the pole moves in the complex p~-plane
as a function of p*, and even crosses the real axis at infinity for p* = 0. This makes the
propagator undefined as it stands. The crossing at infinity gives rise to so-called “zero-modes”
which will be dealt with later (see sect. 3.5.1).

3.2.1 Examples

As a pedagogical example we reduce the box diagram and the crossed-box diagram in ¢3-
theory® to the associated |.c.t.-ordered diagrams. This gives us the opportunity to show the
working of the reduction algorithm in great detail. Later on we will give the general form of
the algorithm.

3The type of theory is not essential for the arguments, the presence of a loop is.
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Figure 3.1: Box and crossed-box diagrams.

Box diagram

The box diagram consists of four propagators: (see Fig. 3.1)
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with incoming momenta p and ¢ and outgoing momenta [ and p+ ¢ — . The four momenta in
the loop are: k1 =k, ke =k —1, ks =k —p—q and ky = k — p. We can rewrite the integral
in terms of energy denominators and phase space factors. We define the quantities {H;}}_;
as

H - ki—l—mQ—ie

2%kt
_ (klflL)Qerine
Hy = 1
? * 20kt —1+)
o (kL —pL—q )P+ m® —e
H =
R T
ki — 2 2 _ .
Hy = p 4 ez p)am Zic (3.9)

2(kt —pt)

Then the k~-integral can be written as

dk— 1
Do = / 6 e —H) (e — )k — M)k — ;) (8.10)

The phase-space factor is given by ¢ = 16k™ (k* — IT) (kT —pT — ¢T) (kT — p™).
The positions of the poles in the complex £~ plane depend on the values of the external
momenta and the value of k7. To calculate the time ordered diagram we must set the values
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Figure 3.2: The relative values of the longitudinal momenta, for the box diagram (a), and the
crossed box diagram (b). All other box diagrams follow from these two through discrete symme-
tries. The absolute scale for the k;”s is set by the value of k', the loop momentum.

of the external momenta p*, ¢t and [*. For specific values of k™, the poles cross the axis and
end up in the opposite half plane. When that happens, the integral changes discontinuously.
The order in which the different poles cross the real axis depends on the values of the external
momenta. In order to make our example definite, and without loss of generality, we assume
pt > IT. Then we have five regions on the k*-axis:

1. k* < 0; ImH; >0, (i=1,2,3,4);

2. 0<kt <it; ImH; < 0,ImH; >0, (i=2,3,4);

3. 1T <kt <pt; ImH,,ImH, < 0,ImH,, ImH; > 0;

4. pt <kt <qt +pT; ImH; > 0,ImH,; <0, (i=1,2,4);
5. pt +qt <kt; ImH; <0, (i=1,2,3,4).

(see fig. 3.2) with respectively zero, one, two, three, and four poles below the real axis. Each
region corresponds with a different process in light-cone time. This observation leads naturally
to the definition of a skeleton graph. Each physical region in k™ corresponds to one skeleton
graph. It is a graph that is topologically equivalent to the original Feyman diagram, however,
it has its internal lines graded + or — corresponding to the signs of the Im H;, associated with
the internal momenta k%'.

In the first and the last case all the poles are at the same side of the real axis so the integral
over k~ vanishes. Cases 2 and 4 are similar to each other. The integrals are calculated by
closing the contour in the upper (lower) half-plane of complex k™ -values. The application of
the residue theorem gives for case 2

9 4 1
Da ¢ (Hy — Hy)(Hs — Hy)(Hy — Hy)’ (3.11)

and for case 4 ) )
pi=" : 3.12
S ¢ (Hs — Hy)(Hs — Hy)(Hs — H) (3.12)
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Case 3 is the most interesting one. Straightforward application of the residue theorem gives
the result

D3 —i (Hy — Hy)(Hy — H3)(Hy + H3 — Hy — H) (3.13)
© " ¢ (Hy— Hy)(Hs — Hi)(H\ — H2)(Hy — H3)(Hy — Hy)(Hs — H»)’
which can be split into two parts
; 1 ) 1
Dd=-1 . (3.14)

¢ (Hy — Hy)(Hy — Hy)(Hs — Hy) ¢ (Hy — Hy)(Hs — Hi)(Hs — Ha)'

A point to be clarified is the meaning of the denominators (H; — H;). We choose the sign
such that in these denominators ImH,; > 0, corresponding to backward moving particles, while
Hj has a negative imaginary part and refers therefore to forward moving particles.

Four-momentum conservation gives ky = k1 — p. We set k = k; and consider the case
ImH; < 0, ImH,; > 0, which means that 0 < k™ < p*. Then, according to the residue
theorem, we have a factor Hy — H; in the denominator corresponding to this diagram. This
factor can be written as

(k)P +m® K 4+ m?
2(pt — k) 2k+

H4—H1 =P (315)

The interpretation of the factor Hy — H; is facilitated by cutting the diagram. We cut it first
by a line cutting the legs of the loop with momenta k7 and k4 and all incoming lines except p.
For every internal line, we define an on-shell value of the corresponding minus-component as

k2, +m?2
ko= 3.16
1,0Mn Qk;r ( )

We define Hy as the sum of the on-shell minus-momenta on the lines cut. In our example we
find for the internal lines 1, 4 and the external line ¢

k% +m? — k)2 +m?
+ T _~_(pu_ J_)

HO(174):q_ 2%t 2(p+71€+)

(3.17)

The cutting line defines an intermediate state with total minus momentum P~ =p~ +¢~
and total on-shell minus momentum Hy(1,4). The difference between these two is just Hy— H1,
eq. (3.15). Up till now, the direction of the internal four momenta is determined by the direction
in which the loop is passed. If we reverse the direction of k4, the momentum with negative
plus component, viz, kT —pT eqgs. (3.15, 3.16), is replaced by p™ — k™, which is then correctly
interpreted as the plus component of the momentum of the particle corresponding to line 4.

If we consider a cut through k1, k3 and p, ¢, we will find k3 = k —p — g. The same algebra
that led to the result eq. (3.17), will now give

_ o K2 4+m?  (p+q—k)?2 +m?
P~ —Hy(1,3) = p +gq < ot + 2 gt — k)

= Hs—H (3.18)
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It is clear that this procedure can be followed until the cut considered is cutting outgoing
external lines only. There it stops. So, we conclude that we have the general result that any
factor (H; — H;) is equal to the difference of the minus-component of the total momentum
P~ =p~ 4+ ¢, and the on-shell minus-component of the momentum carried by the lines cut.
Generally this holds for all combinations ¢ and j such that ImH; > 0 and ImH; < 0 since
the imaginary part is related to the sign of the on-shell momentum.

The l.c.t.-ordered box-diagrams can be interpreted as fourth order diagrams in |.c.-perturba-
tion theory, having the form

1 1 1
wP__HO%P__HOVQP__HOVl (3.19)

In order to systematize the reduction of Dy to a sum of residues that correspond to l.c.t.-
ordered diagrams, it is appropriate to consider both the algebraic structure and the connection
of residues with diagrams.

First, we demonstrate the use of some concepts that will be of crucial importance for the
proof of equivalence of the Feynman-diagram approach and l.c.t.-ordered perturbation theory
in the simple case of the box diagram. (The general proof is to be found in sect. 3.6).

The first object of interest is the Vandermonde determinant of order k:

HFY ... H? H, 1
A(Hy, ..., Hy) = : : Do (3.20)
H7Y .. H Hp 1
The second one is Wy, , (H1, ..., Hy|Hp1, - . Hygrn) defined as

H{L+m*2 - H? H, 0 1
| HPtm=2 H?L H, 0 1
Wn,m(le--7Hn|Hn+17~-~7Hn+m) - (_1) Hr'rlzjrrim*2 H72L+1 HnJrl 1 0
Hyfn Hiym Hppm 10
(3.21)

By direct computation one verifies easily the following statements:

Wl,n(y\x1,-.-7$n) _ (=" (3.22)

A(yvxlv"wxn) H:L:1(y—33z),

W R -1
A(-xla"wxnay) Hz:l(xl_y)
Straightforward application of our rules gives for the skeleton graphs the following corresponding
amplitudes:

i W31 (Hs, Hy, Ha|H,)

D? = —
¢ A(Hs, Hs,Hy, Hy) '

(3.24)
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Figure 3.3: The plane box. (a) Feynman diagram, (b) skeleton graphs, and (c) l.c.t.-ordered
diagrams.

i Wi s(Hs|Hy, Ha, Hy)

DY = - :
(b A(H3,H1aH27H4)

(3.25)

In case 3 we have )
i Wao(Hy, H3|Hy, Hy)

¢ A(Hg, Hs, Hy, Hp)
D3 needs to be rewritten such that energy denominators appear. The energy denominator
(Hy — Hy)™! should appear in all l.c.t.-ordered diagrams associated with D3. It can be
extracted as
Wao(Hy, H3|Hy, Ha) 1 (W1,2(H3|H1,H2) Wo,1(Hy, H3|Hs)

— 3.27
A(Hy,Hs, Hy, Hy) (Hs— H1) \ A(Hs,Hi, Hs) A(Hy, Hs, Hs) ) (3:27)

D3 =

(3.26)

and upon using eq. (3.22) we recover the final expression (3.14). The proof in sect. 3.6
demonstrates how this type of reduction can be carried out in the general case.

Secondly, we describe the relation of this algebraic procedure with I.c.t.-ordered diagrams.
We begin with the Feynman-diagram and enumerate the possible configurations of poles in
the complex k~-plane. (Cases 1,...,5.) A pictorial representation of those cases where the
contour integral over k~ does not vanish (Cases 2, 3 and 4) is given by diagrams where the
sign of ImH is indicated. (See fig. 3.3.)

The box diagram is relatively easy to reduce to l.c.t.-ordered diagrams because in any
associated skeleton graph there are at most two vertices that need to be ordered with respect
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(b) (¢)

Figure 3.4: The crossed box. (a) Feynman diagram, (b) skeleton graphs , and (c) l.c.t.-ordered
diagrams.

to each other. There are only two internal lines which connect an incoming line with an
outgoing line. Generally we call this kind of diagrams flat. The box diagram being flat, it does
not show all the possible complications. Therefore, we also discuss the crossed box.

Crossed box diagram

The difference between the flat box and the crossed box is clearly visible in the sign patterns,
for the imaginary parts of the denominators, one encounters when going around the loop. In
the flat box one encounters the sign patterns + — ——, ++ —— and + + +—. In the crossed
box, however, the sign patterns are + — ——, + — +— and + + +—. When there are two poles
on either side of the real k™ axis, two sign changes occur, which can be seen as “bends” in the
internal line, from backward to forward and vice versa. The skeleton graphs with signatures
+ — —— and + 4+ +— are treated in the same way as the corresponding flat ones. The case
+ — +— leads to four l.c.t.-orderings, which we explain now. There are two possible orderings
of the two vertices with incoming external lines. Having chosen one ordering, we follow one
of the internal lines until we reach a vertex with an outgoing external line. Either of the two
vertices with outgoing lines can come first. This gives a total of four l.c.t.-ordered diagrams.
The corresponding diagrams are depicted in fig. 3.4. We choose again p* > [T. The algebra
for the + — +— case, given by the interval g7 — It < k™ < [T, gives the residue

Wa o(Ha, Ho|Hy, H3) 1 (W1,2(H2|H1,H3) Wa1(Hy, Ha|Hs)
A(Hy,Hy, Hy, H3) (Hy — Hy)

_ 3.28
A(H,, Hy, Hs) A(H4»H27H3)> (3.28)
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that can be reduced to

1 1
(Hy — Hy)(Hy — Hy)(Hy — Hy) | (Hy — Hy)(Hs — Ha)(Hy — Hy)’

(3.29)

In order to expose the four |.c.t.-orderings, we write the two energy denominators next to
the vertices with incoming lines as sums of two terms , e.g.,

1 1
(Hy— Hi)(Hs — Hy)  (Ho — Hy)(Ha + Ho — Hy — H))
+ ! (3.30)

(Hy — Hy)(Hy + Hy — H3 — Hy)

Inserting these two denominators in the above expression gives four |.c.t.-ordered diagrams:

1
D2 = >
x ¢ (Hy — H3)(Hy + Ho — Hs — Hy)(Hy — H3)
py = L !
x ¢ (Hy — H1)(Hy + Hy — Hs — Hy)(Hy — H3)
pt - L !
x ¢ (Hy — Hs)(Hy + Hy — Hs — Hy)(Ho — Hy)
) 1
D> = ! . (3.31)

& (Hy — Hy)(Hy + Hy — Hy — Hy)(H, — Hy)

The I.c.t-ordered diagrams D' and D® are obtained in a similar way as in the case of the
box diagram. Now we can easily answer the question why the number of I.c.t.-ordered diagrams
is smaller than the number of ordinary time-ordered diagrams. In the latter case, a loop with 4
vertices leads to 4! = 24 diagrams. For the l.c.t.-ordered diagrams the number is reduced, be-
cause of the smaller number of poles. We can also interpret it as the spectrum condition. The
spectrum condition restricts the plus-component of any momentum on any line, internal as well
as external, to nonnegative values. Internal lines with negative plus-momentum correspond to
poles with positive imaginary part and are interpreted as anti-particles. By reversing the direc-
tion of the momenta on these internal lines while maintaining four-momentum conservation,
these lines can be again associated with particles. So, conservation of plus-momentum then
provides the limitation of possible diagrams. The number of diagrams however, does depend
on the external momenta; it is four in the case of the box diagram and six for the crossed box
diagram.

3.2.2 General case

In a typical Feynman diagram on encounters several single-particle propagators. Following
the same line of reasoning as used in the two examples given above, one will find that the
corresponding poles in the loop variable k£~ are located at different sides of the real k™ -axis,
depending on the value of k*. To illustrate this fully general property, we consider a one-loop
diagram with IV vertices, N internal and N external lines. The number of incoming lines is
Ni; there are Ny = N — Nj outgoing lines. Suppose we call our integration variable k& and
identify it with ky (see fig. 3.5). Four-momentum conservation takes the form
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PN;—1 PN,

PN—2 :

b3
PN= p2
PN p1
Figure 3.5: One-loop diagram
k' = k" + K (pl, ..., ply), (3.32)

where the functions K (p/, ..., p’y) are linear. It is obvious that for arbitrary, but fixed external
momenta all k" < 0 (k" > 0) for k* — oo (k* — —00). So, we can divide the real k*-axis
into different regions, a semi-infinite region where all k;* < 0, another where all k" > 0 and
N — 1 finite regions where some of the k;“ are positive, the others being negative.

We will use here again the concept of a skeleton graph, as we did in the cases of the
box and crossed box diagrams. For any Feynman diagram with given values of the external
momenta, and for every interval in the loop variable k™, one draws a graph that is topologically
equivalent to the original Feynman diagram and has its internal lines graded either + or —,
corresponding to the signs of the imaginary part of the poles H;. In the one-loop case we thus
find for k™ — —oo the skeleton graph with all lines graded +; there are N — 1 skeleton graphs
with lines graded + as well as lines graded — and, finally, for k™ — oo, a skeleton graph with
all lines graded —. From our discussion of the causal single-particle propagator it becomes
immediately clear that lines graded — (4) correspond to particles moving forward (backward)
in zT-evolution. This justifies the terminology we adopt: if two vertices in a skeleton graph
are connected by a line with internal momentum say k:7+ > 0, then the vertex from which the
momentum k£ is flowing is said to be earlier than the vertex into which k!* is flowing.

Apparently, each skeleton graph corresponds to a (partial) I.c.t.-ordering of the vertices in
a Feynman diagram. The graphs with all lines graded + or all graded — correspond to a cyclic
|.c.t.-ordering of the vertices that contradicts logic. Fortunately, these graphs are associated
with the situation that all poles in £~ are lying at one side of the real £~ -axis, in which case the
amplitude vanishes. In all other graphs there is at least one vertex with an outgoing internal line
with positive plus-momentum and an incoming internal line with a negative plus-momentum,
and at least one vertex where the situation is reversed. The former vertices are called early,
the latter late vertices. A sign change in the skeleton graph corresponds with an early or a
late vertex, the other vertices are called trivial. (see fig. 3.6) If only one early and one late
vertex are present in a given skeleton graph, the partial ordering is complete after the trivial
vertices are ordered. This was the case for the flat box diagram. Otherwise, the different early
vertices must be ordered with respect to each other and with respect to the late vertices. This
additional ordering produces several |.c.t.-ordered diagrams associated with a single skeleton
graph. In this way, a single Feynman diagram gives rise to a number of consistently I.c.t.-
ordered diagrams. At this stage one reverses the directions of the four-momenta % on all
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i early
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+ kn—l km UL,
Figure 3.6: The sign change in ImH; correspond to early or late vertices. Both lines go in the
same time direction. The sign of ImH; is opposite to the sign of k.

those lines @ where kj < 0. One sees immediately that as a result early vertices have only
outgoing internal momenta, whereas late ones have only incoming internal momenta.

We use the late vertices in a different way than the early vertices. Starting from an early
vertex, all vertices on the lines going out from this vertex are ordered relatively to this vertex.
However, vertices lying on different lines are not yet ordered relative to each other. For two
lines starting at different early vertices and connected at a late vertex, we can fix the relative
ordering of the intermediate vertices, since all vertices on both lines must occur before the late
vertex. When all late vertices have been encountered, their relative ordering determines the
complete ordering of the full diagram.

The last point to be clarified is the form of the amplitudes corresponding to l.c.t.-ordered
diagrams. We consider again the one-loop diagram and write the covariant amplitude as

o= [ A ! (3.33)
) @m)A [k —m2 +ie] - [k — m + ie] '

where for the sake of simplicity we have put all vertex functions equal to unity. Using eq. (3.32)
we can write for a typical factor in the denominator:

k2, +m? —ie
B —m?2+ie = 2kF (k- — 2L 1
s — my + € i (Z ij_
_ (K + K% +m?2 —ie
— okt (k= R
Z( + 7 ij»
= 2kf (k™ — H)) (3.34)

The poles in k=, Hj, are functions of the kinematical components of k* and the external
momenta p;-‘. The imaginary part of H;, ImH;, is determined by the sign of k:j' Now suppose
that for given external momenta k™ is such that m pole positions are located in the upper half
plane (ImH; > 0) and n = N — m in the lower half plane (ImH; < 0). In order to simplify
the discussion, we renumber the lines such that ImH; > 0 for 1 < ¢ < m, ImH; > 0 for
m+1<j <N =m+n. Consider the k£ -integral by itself:

dk~ 1
Prmn = 3.35
’ /27T2Nk1+-~-k;]f,[k—Hl]...[k_HN] ( )
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After performing the integral by closing the contour in either Imk™ > 0 or Imk™ < 0 one
obtains a rational function of the H;'s:

v Wm,n(Hlv'";Hm|Hm+1"'HN)

Dmn:
TNk Lk A(Hy, -, Hy)

(3.36)

Details on the functions W, ,, and A are given in sect. 3.6. As we argued before, the k™
integration splits into N + 1 intervals, (—oo, k7 (0)), (kT(0), kT (1)), ---, (kT (N — 1), +00),
where the boundaries kT (i) are defined such that in the interval (k™ (r —1),k"(r)) there are,
for finite r, precisely » H;'s with ImH; > 0. In each of the finite intervals one skeleton graph
is present corresponding to one k~-integral D,, ,,. The full Feynman diagram is recovered by
summing D,, , over m from 1 to N —1, integrating over k™ over the appropriate finite interval,
and over k. For either n or m different from 1, D,, ,, does not have the desired form eq. (3.6).
A further reduction, corresponding to the transition from the partially ordered skeleton graphs
to the completely ordered diagrams must be performed. The heuristics that help us to do so
is provided by the space-time concepts. Take any early vertex and identify it with an event
at some l.c.t. 27 = 79. Suppose H; and H,, 1 are the poles corresponding to the outgoing
and incoming internal lines resp. at this vertex. The intermediate state with momenta k; and
k1 corresponds to the |.c.-energy denominator H; — H,,,+1. We can convince ourselves that
this is correct if the reversal of four momenta on lines with k:j' < 0 is effected. We find

k2 2 g2 +m2,
Hy— Hyyy = P~ — SL 2 Bt Tt (3.37)
2% ok,

The identification of P~ becomes clear when one uses the surface 7 to cut the internal and
external lines. We can close the surface by cutting all the external lines attached to the piece
of the Feynman diagram out of which the p™ momentum flows. The momentum flow through
this first cut plane 1y equals the flow through the second cut plane 7 since energy-momentum
is conserved locally in a Feynman diagram. The flow of P~ through the internal lines equals
the initial flow into the diagram minus the flow through the external lines cut at 7. The loop
momenta do not contribute because they go into the 7 cut plane as well as out of the cut plane,
so there is no net contribution of these momenta. (We stress here that this interpretation is
correct only after reversal of the four momenta on the lines with ImH; > 0.) For brevity we
call denominators of the form H; — H; = P~ — Hy(i,J) energy denominators. These cut
planes can be interpreted as equal-time surfaces.

Now the strategy is clear. For every skeleton graph one uses the surface 2™ = 7 to cut
lines that give rise to energy denominators. That this is possible is the content of our proof of
equivalence. Indeed, as we demonstrate in sect. 3.6, we have

Wm,n(Hh e 7Hm|Hm+17 o aHN) _ 1 % (338)
A(Hy, -+, Hy) Hy — Hpia
(Wm1,n(H27"'7Hm|Hm+1a"';HN) + Wm,n1(H17"'va|Hm+27"’7HN))
A(H27"'7HmaHm+lv"' 7HN) A(Hla"'7Hm;Hm+27"'7HN)

That this identity leads to a recurrence follows from the fact that the two terms in the r.h.s.
of eq.(3.38) have the same form as the original one. The reduction stops if either n or m is
reduced to 1.
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ia

Figure 3.7: Illustration of the cut-procedure in a general n-leg diagram. For each cut area there is
four-momentum conservation in a Feynman diagram. We can use this to make general statements
for an intermediate state. The minus-momentum transferred across the intermediate state is
equal to the incoming minus-momentum. The sum of energy denominators contains the sum
of all external minus-momenta minus the sum of all on-shell values of the particle lines. Loop
momenta drop out because these go in and out of the cut area.

There remains one loose end that we tie up now. If several early vertices occur, we have
to consider all l.c.t.-orderings of them. (This happens if n > 2.) Moreover, we may have
to consider |l.c.t.-orderings such that some late vertices occur before some, but not all, early
vertices. In all those cases the number of internal lines cut by an 1 = 7 surface is greater than
two, but always even: for every line going into this surface there is a corresponding outgoing
line. We have seen that a pair of lines, one incoming, the other outgoing, that connect in
an early (or late, for that matter) vertex, gives rise to an energy denominator, say H; — H;.
When two pairs of such lines occur, there will be two energy denominators, which we call
simultaneous parts. A simple example illustrates this. Let the two early vertices be o and g3,
and p# and pg the momenta on the two corresponding incoming external lines. The reduction
algorithm gives two factors, one corresponding to the vertex «, of the form 1/(H,, — H;,),
the other being 1/(H;, — Hj,). As before, we can rewrite such factors, upon reversing the
backward flowing momenta, in the form 1/(P~(8) — Ho()) and 1/(P~(«) — Ho(c)), where
P~ (y),v = «, 3 is the total net external minus momentum flowing into vertex . A simple
algebraic identity

1 1
P~(a) — Ho(a) ~ P~(8) — Ho(B)
1 1 1
P=(a) + P~ (B) — Ho(a) — Ho(B) (P—<a> ~Hola)  P=(9) - Hom)

combines the two factors in the correct way. The first factor can be rewritten as 1/(P~ (o U
B) — Ho(awU 3)), which we recognize as an energy denominator for the intermediate state with

= (3.39)
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Figure 3.8: The product of two time orderings is the sum of the relative orderings.

the four internal lines 44, jo. 93 and jg. The combination 1/(P~(a) — Ho(a))(P~ (U B) —
Hy(a U B)) corresponds to the I.c.t.-ordered diagram where the vertex oo comes before vertex
3, the other part of the r.h.s. of eq.(3.39) corresponding of course to vertex ( preceding vertex
« (see fig. 3.8). Clearly, the splitting formula works also recursively, so it applies to any number
of pairs of internal lines.

With this observation we end our general discussion of the reduction algorithm. We stress
that the l.c.t.-ordered language used here has heuristic value only, but does not replace a strict
proof. The algebraic details are provided in section 3.6.

3.3 Spin-1/2 particles

In the previous sections we dealt with scalar particles only, thus avoiding complications due
to summations over spin degrees of freedom in intermediate states. Here, we discuss these
complications for spin-1/2 particles. The reduction algorithm in this case is partly identical
to the algorithm for scalar particles. However, we now have to include in our treatment not
only the energy denominators, but also the numerators. Consider the Feynman propagator for
a single particle. The spin sum % + m depends on p~, so we have to account for that when
we define the skeleton graphs corresponding to a Feynman diagram. It has been argued before
(Kogut & Soper, 1970) that one can split the Feynman propagator into two pieces, one that
is independent of p~, the instantaneous part, and another piece, the propagating part, where
p~ occurs in the denominator only:

¢ +m ﬁonfshell +m 7+ u(a)(p> ® a(a) (p) 'Y+

= = Z +

p2—m2+ic  p?—m2+ie 2pt p2 —m?2 + ie 2pt’

(3.40)

(03

with the obvious definition p” . = (po. o, pT.pL), wherep, = (p% +m?)/(2pT).
The spin sum >__ u(®)(p) ® @(*)(p) runs over a complete basis in spin space, viz, particles
and anti-particles. In a loop p™ can take any value, positive or negative. There are two spin
polarizations, however, for a particle with negative momentum and a given polarization, this
correspond to the anti-particle with the opposite polarization. There are two equivalent ways
to interpret the sum; either as sum over particles and anti-particles with two spin degrees of
freedom, or as particles with two spin polarization which travels forward or backward in time.
We will show that the last interpretation is consistent with the spectrum condition.
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In order to illustrate the differences between the purely scalar case and the situation where
spin-1/2 particles occur, we discuss in the next subsection the flat box diagram with two bosons
and two fermions.

3.3.1 Example: fermion box diagram

Consider the case of two spin-1/2 fermions exchanging spinless bosons. A Feynman diagram
for the fourth order in perturbation theory is shown in fig. 3.9, (a). The momenta are defined
similar to the scalar case, fig. 3.1. Before the associated skeleton graph can be drawn, one
must split the fermion propagators for the intermediate states into the two parts: instantaneous
and propagating. This results in four different diagrams shown in fig. 3.9 (b). In these four,
the p~-dependence of the propagators is present in the denominators only. Therefore, one can
apply the methods described in the previous section immediately, since the numerator does not
depend on the integration variable. Doing so, one obtains the eight skeleton graphs drawn
in panel (c). These graphs form the basis of the splitting into |.c.t-ordered diagrams. After
this has been achieved one can combine certain diagrams into a single diagram by adding
the propagating part to the instantaneous part of the fermion propagator. This regrouping of
diagrams is represented graphically in the last panel of this figure. The formulae associated
with the four final diagrams are

P — /ko“dQ’ﬂ 7 Asy’ ® 7°A1y?
(2m)%¢ (P~ — Ho(1,4))(P~ — Ho(1,3))(P~ — Ho(1,2))
/ dk*d?k 77t ® Ay
(2m)3¢ (P~ — Ho(1,4))(P~ — Ho(1,2))
[ dk*d2h, 117" @ 4 ALl
B / (2m)3¢ (P~ — Ho(1,4))(P~ — Ho(1,3))(P~ — Ho(1,2))’
DO _ / dktd?ky A5y’ ® 74077
(2m)3¢ (P~ — Ho(1,4))(P~ — Ho(1,3))(P~ — Ho(2,3))’
DB _ / dktd?k, Q37" @ 717!
(2m)3¢ (P~ — Ho(1,4))(P~ — Ho(2,4))(P~ — Ho(2,3))’
W _ / ik, 7" A3y’ ® 7 A1y . (3.41)
(2m)%¢ (P~ — Ho(1,4))(P~ — Ho(1,3))(P~ — Ho(2,3))
The objects A and 2 are defined as
A = Fion +my, (3.42)
and
Qi =K+ mi = N+ (k7 — k). (3.43)

The on-shell values of the minus components have been defined before, see eq. (3.5). The
energy denominator P~ — Hy(1,2) is of course

P™ —Ho(1,2) = p +q —Fkion—FKoon—on
k2, +mi k3, +m3

o _ , 3.44
b ok ok (3-44)
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(b)

(d)

Figure 3.9: (a) The Feynman diagram, (b) the corresponding diagrams with on-shell spinor projec-
tions or instantaneous parts, (c) the skeleton graphs, (only the tilted box leads to two l.c.t.-ordered
diagrams) (d) the summed l.c.t-ordered diagrams, which yields the adjusted blink propagators
(with the points at beginning and end of a line).
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and the other ones are defined similarly. The phase-space element ¢ has also been given before,
below eq. (3.10).

The flat fermion box shows clearly the peculiar complications caused by spin. Because
the numerators and the denominators of the fermion propagators depend both linearly on the
integration variable k~, one has to perform a Laurent expansion in order to identify the pole
terms. This leads to a number of “intermediate amplitudes”, equal to 2F where F is the
number of internal fermion lines. These amplitudes give rise to skeleton graphs that can be
reduced to l.c.t.-ordered diagrams in the, by now, familiar way. The l.c.t.-ordered diagrams in
which an element WJ“/2I€;L occurs, are special, because associated to every one of them there
occurs a diagram where the element v+ /2" is replaced by A;/(2k;" (P~ — Hy)). This happens
only in those cases where the on-shell value H; = (k? + ml)/2kfr occurs in a single energy
denominator. These are the states that begin and end with the creation and the annihilation
of the same particle. We call an internal line with this property a blink. In the case considered
above: D) contains Hy in only one factor in the denominator, the same holds for D(?) and
H, whereas D®) contains the blinks H; and Hs. If a blink occurs, one can recombine, after
the l.c.t.-ordering has been performed, the propagating part and the instantaneous part into
a complete propagator. This is done in the diagrams D), D) and D®) eq. (3.41), and
illustrated in fig. 3.9(d), where the thick lines beginning and terminating in dots symbolize
complete propagators.

3.3.2 Including the instantaneous terms

By now, it is relatively easy to formulate the general reduction algorithm. It has four steps.

(i) For a given Feynman diagram, perform the Laurent expansion of the fermion propagator,
i.e., split the propagator into a propagating part and an instantaneous part;

(ii) Determine the skeleton graphs for all diagrams obtained in step (i);

(iii) Perform the reduction of all skeleton graphs in exactly the same way as it was done in
the scalar case;

(iv) Identify the blinks and sum the diagrams corresponding to the same blink in order to
obtain amplitudes with complete spin sums.

In order to understand why we recommend step (iv) we consider the general case. Let k!
be the four momentum of a blink. The two corresponding diagrams, partly shown in fig. 3.10,
contain the factors*

1 A;
Gi = U%F P~ — (- Hy--)
N o= AYTH ATk Ak,
Hy = (ki +mi)/2k],
g = /2. (3.45)

4We define v, = (0,71,72,0), ki = (0,k1,k2,0) and v, -k = —(v1k1 + 72k2).
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Figure 3.10: The state begins and ends with the creation and annihilation of the same particle.
The singularity in this diagram cancels against the same singularity in the instantaneous diagram.

We see that both G; and g; become singular at kf = 0. These two singularities appear to
cancel. We can see this most clearly if we realize that the denominator P~ — (--- H;---) can
be rewritten as k; — H;. If k¥ — 0, then H; — o0, so we see that in this limit G; behaves as

kf—o 1  ~TH; vt

Therefore, the sum of the two contributions is finite for k;“ — 0.

Uy T H vk 4y -k +my +

Gi + g; _ _+7 v i YL RL +7_+
2k; k; — H; 2k;
Yk + Tk 4y kL +my

2k (k; — H)

ki —0 TR kg
kz‘2¢+m? ’

(3.47)

This expression appears after the integration of the energy variable. Then k; is a function
of the external variables only and represents the p~-flow through the intermediate state under
consideration.

3.3.3 General case

We have seen that singularities in l.c.t-ordered diagrams cancel similar singularities in instan-
taneous terms. See also (Brodsky et al., 1973). The instantaneous terms might contain other
divergences that are cancelled by lower-order terms with additional instantaneous terms. The
question remains whether this procedure ends, or whether we are left with terms which contain
only instantaneous singularities that do not cancel each other. In the section on divergent
contour integration (sec. 3.5.2) we show that the proper treatment of the shift of poles to
infinity removes all singularities from each residue. So after the recombination of terms we
won't have a residual term in the form of instantaneous parts.

Although we are not concerned with gauge theories explicitly, we note that most of these
terms drop in a gauge theory with the (naive) light-cone gauge, and in theories with scalar and

pseudo-scalar coupling, due to YTyt = yT45yT = 0 = yTvinT.
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Figure 3.11: The two-loop diagram.

3.4  Multi-loop diagrams

The extension of the reduction algorithm from Feynman diagrams with one loop to Feynman
diagrams with several loops is not difficult, but there are some points that need to be clarified.
The loop integrations can be done one after another since the structure of a l.c.t.-ordered
diagram is not essentially different from a Feynman diagram. We will illustrate the procedure
with a simple example in the section below.

3.4.1 Two-loop diagram

We consider the scalar diagram with two loops, depicted in fig. 3.11. The corresponding
integral is :

[ dgdk- )
D= / (2’/T)2¢ (k7 — Hl)(k7 — HQ)(]C7 +q — HS)(qi _ H4)((]7 — Hs) (348)

Where the phase factor ¢ = 2°k* (k* —p*)(k* +¢7)q" (¢* +p*) and the poles are given by:

e T
Hy = p + (pg@’iQZiTQ — R
2 2 .
Hy — (kg&%r)qi;nz 2 _’“J_Te‘ﬁ (3.49)
Hy = -p~+ iqéagir)pj)m gt Tzﬁ
Hs = L —de

There are twelve sectors in kT ® g*-space corresponding to twelve skeleton graphs. These
sectors are depicted in fig. 3.12, where also the signatures of the skeleton graphs are shown.
The amplitude D vanishes if either the integral over k= or the one over ¢~ vanishes. The
former happens if ImH;,ImH> and ImH3 have the same sign, the latter if this happens for
ImH;3, ImH, and ImH;5. We read off from fig. 3.12 that there are two sectors remaining,
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Figure 3.12: The imaginary signs of {H1, Ha, Hs, Hy, Hs} for the different sectors in k* ® ¢t
space. Only the inner regions I and II correspond to integrals and skeleton graphs.

Figure 3.13: The two l.c.t-ordered diagrams that follow from the two-loop diagram.

denoted as I and II. In sector I we have Hy, H3, H; < 0 and Hs, H5 > 0. The reduction
algorithm gives the |.c.t.-ordered diagram I of fig. 3.13, with l.c.t. ordering a < b < ¢ < d.
In sector I we have Hy, Hy < 0 and Hs, Hs, Hs > 0. The corresponding l.c.t. ordering is
a < ¢ < b < d. The only difference between the two diagrams is the sign of ImHj3, that is
linked to the two different l.c.t. orderings of the vertices b and c. For the sake of completeness

we give the algebraic expressions for the two l.c.t. ordered diagrams. Upon integration over
k™ we obtain:

b _ [ 1
2m (H2 — Hy)(q~ + H2 — H3)(q~ — Ha)(q~ — Hs)

Dp = - (4 ! L (3.50)
2m (Hy — H1)(¢~ + Hy — Hs)(q~ — H4)(¢~ — Hs)
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The ¢~ integration is straightforward and gives the result:

1 1
Dr =t — ) (s + Ha = Hy)(Hs — H5)
1 1
Du = i ) (s — I + 1) (Hs — ) (3:51)

After reversing the directions of the lines corresponding to negative k', viz, ko = k — p and
ks =q in Dy and ko, k3 =k + q and k4 = p+ ¢ in Dy we obtain the |.c.t.-ordered diagrams
depicted in fig. 3.13. As before, every factor in the denominators of eq. (3.51) can again be
written in the form P~ — H(4, j), where Hy(4, j) is the sum of the energies on the lines i and
j-

We see again that the integrations over k™ and ¢ are limited to finite regions. After
reversing the lines with negative ImH;, one sees that the diagrams obtained have the spectrum
property.

3.4.2 General multi-loop diagrams

In an arbitrary Feynman diagram with L loops, one must first identify the independent in-
tegration variables, say ¢;,...,q;. Then one can characterize the different types of pole
positions in an L-dimensional space with coordinates (qf',...,qz'). The different signatures
(ImH,, ..., ImHy) divide this space into a number of sectors, each sector being associated
with its particular skeleton graph. The sectors where the pole positions in all variables g,
are distributed over both half planes, Img;,” > 0 and Img; < O resp., are necessarily finite.
This is so, because for any loop i, all poles Hy occurring in this loop will have ImH; < 0
(ImHj, > 0) if the integration variable ¢;” goes to infinity (—infinity). Therefore, the sectors
in (qf‘, . 7qz')—space which are semi-infinite in either of the qi+ do not contribute to at least
one of the integrals over the g; variables.

So, in general we will have a finite number of skeleton graphs that each give rise to a finite
number of l.c.t.-ordered diagrams. Each and every one of them has the spectrum property.
In the case of spin-1/2 particles, one can duplicate this algorithm, provided the full Feynman
diagram, containing F' fermion lines, is first split into 27 intermediate diagrams according
to the division of the spin-1/2 propagator into instantaneous and propagating parts. Then
the reduction algorithm is applied to each of the intermediate diagrams, giving rise to the
appropriate skeleton graphs and finally to the l.c.t.-ordered diagrams, as was demonstrated
in the one-loop case in the previous subsection. Of course, in the multi-loop case blinks may
occur as well as in the one-loop case. They are treated in exactly the same way as before. Thus
we see that the multi-loop Feyman diagrams, although algebraically more involved than the
one-loop cases, can be reduced to l.c.t.-ordered diagrams using precisely the same algorithm
as was used for one-loop Feyman diagrams.

A final remark concerning the ie-prescription is in order here. It is used to define the
deformed integration contours in all variables g;~ simultaneously. After the residue theorem is
applied to perform the contour integrals, the real parts of the poles are substituted in formulae
like egs. (3.50, 3.51) (¢ = 0). If one would substitute complex poles in eq. 3.50, ambiguities
might arise in the values of the imaginary parts of the poles in ¢g—.
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(a) (b)

Figure 3.14: Two cases where the energy integral is ambiguous: (a) If the k& momentum along
the loop is constant. (b) If there is one pole left in the k™ -integration; the pole of the boson
accompanied by the instantaneous part of the fermion propagator.

3.5 Technical difficulties

In the previous sections we dealt with the equivalence between Feynman diagrams and l.c.t-
ordered diagrams when the integration over k£~ is well-defined. There are two types of special
cases were the k™ integration is not well-defined. We can best illustrate these with simple
examples. Consider a scalar loop like in ¢ theory. If the external line has positive p* then the
integration domain in k% is the interval 0 < k* < p™ (see fig. 3.14 (a)). One may wonder
what will happen if pT = 0, because in that case the measure of the integration interval is
zero. The poles in the two propagators cross the real axis in the k~-plane for the same value
of k*: kT = 0. If this diagram is finite, there must occur a delta function like contribution in
k*. In cases where p? < 0, one can approach p*t = 0 by performing a Lorentz-transformation
(that, however, does not belong to the stability group of the null plane) and take the limit.
Such a Lorentz-transformation is always possible for a space-like external momentum, and
there are situations where the momenta on three space-like external lines can be transformed
to have p™ = 0 simultaneously. In other cases, like in (generalized) tadpoles, the measure of
the integration domain is rigorously zero. We will consider a general approach which holds in
all cases and give the same answer as a covariant calculation in the limit p* = 0. Tadpoles
have a close relation with the ordering of operators in the Hamiltonian, therefore we see that
the 6(k™) contributions have a relation with the ordering.

The other case where the k™ integration is ill-defined, occurs if at most one pole is present
in the k£~ integration. This happens for all Feynman diagrams with at most one boson prop-
agator and at least one fermion propagator in the loop. Then the intermediate diagrams with
an instantaneous part of the fermion propagator combined with a boson propagator needs reg-
ularization. Other examples are diagrams with at least two instantaneous terms, which also
lead to divergent integrals. The first order correction to the fermion self energy in a theory
of scalar bosons and fermions with Yukawa coupling, is a simple example (see fig. 3.14 (b)).
The fermion propagator has an instantaneous part such that the only £~ -dependence of the
integrand resides in the boson propagator. This integral is not defined, so we need a way to
deal with this type of integrals in a consistent way. We are primarily interested in a treatment
which does not interfere with the algebraic rules, so the regularization must be a linear opera-
tion. In addition we require it to be homogeneous in the integration variables. In both cases,
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one where tadpoles are present and the other where instantaneous parts give rise to infinities,
we are lead by covariance in our choice of regularization. Other arguments do not restrict the
regularization to a unique method, while covariance does.

3.5.1 “Zero modes” from energy integration.

One of the integrals which show the presence of zero modes in a time-ordered formulation has
been discussed already by Yan (Yan, 1973b):

1
I dn- =
oo ) P (2(pt —kt)p~ —m?2 +ie)(2ptp™ — m?2 + ie)
_ 1 covariant i7T5(p+ )
d = — .(3.52
/ Pty —m? 1o mz (352)

For p* # 0 there is one double pole either above or below the real axis so it was concluded
that, since p™ = 0 is an unphysical value (no free state can acquire p™ = 0), the integral
should vanish. A careful analysis shows that eq. (3.52) is an ambiguous expression, so one can
get any value (including the covariant answer) and one needs to choose a regularization to get
a well-defined integral. (The proper covariant value was obtained by Yan by taking the limits
pt 1 0and p™ 10 in a special way.)

For p* = 0 the p~ integral diverges, so (p* — 0,p~ — 00) is the ambiguous point. If p*
moves along the real axis and crosses p™ = 0, the poles move through infinity and end up on
the other side of the real axis. To deal with all singularities of this type at the same time, we
introduce the variable v = 1/p~ and study a general case:

1
D, = /d -
Y pip —HE +ie)2pip — HE i) 2pip — Hi +ie)

un72

/du (2p{ — (Hi- —ie)u) -+ (2pn — (Hy —ie)u) -

The integrand goes to zero like u~2 for u — 400, therefore the integral is well-defined, unless
the integrand has a singularity at u = 0. So the only divergence can occur if v — 0 which
gives a finite contribution only if all p™-momenta vanish at the same time. The poles in the
variable p~ that moved to infinity, now correspond to poles in the variable u that cross the
real axis at u = 0 when either of the variables pf is zero. If all p;" happen to be equal,
the integrand is singular at w = 0. (The first example, eq. (3.52), is the special case with
n = 2; H{- = H5- = m?2.) This gives a finite contribution to the integral of D over p*, with
support p™ = 0, thus D contains a delta function in p™.

The u coordinate regularization replaces all other arguments we might have to deal with this
“zero-mode” problem. The choice of regularization determines the integral uniquely. Instead
of treating the general expression, eq. (3.53), we regularize the case of a single pole in the
integrand and use an algebraic relation to obtain the general expression. Consider the integral

(3.53)

1
b= / Wt — (i)

(3.54)
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This expression is ambiguous for two reasons: it has a pole at u = 0 and a double pole occurring
for p© = 0 Au = 0. The first ambiguity we remove by adding a small imaginary part to one
factor u coming from the Jacobian. In order to obtain a covariant expression we must do this

symmetrically:
1 1 1 1
a_>§<u+i5+u—i5>' (3:55)

We split the integral into two pieces; one just above the real axis and the other just below
it. We do not give the singularities some strict nature, like principal value, which would lead
to non-integrable singularities under multiplication such as the square of the principal value
for u=2. Generally we treat the energy as a complex variable (since each pole corresponds
to a particle), and the kinematical variables are treated geometrically. The choice eq. (3.55)
separates p™ > 0 from pT™ < 0 for all positive values of € and §. Thus we find for the regularized

integral:

e 1/ 1 1 1
b = /du§ (u+i6 + u—ié) (2pt — (HL —ie)u)
mif(p*) mif(—p™)
T 2t i(HE —ie)s | 2pt —i(HL —ie)s
2mif(p™)

T Tty i(H+ —i€)d’ (3:56)

For p™ < 0 we reversed its sign to obtain the last line. Integrating D1°® over p* from 0 to
a cutoff A and taking the limit € — 0, gives 7(In(H*) 4+ Ind + mi/2 — In2A). We shall see
that the constant part Ind + im/2 — In 2A drops if we have two or more energy denominators.
Using the algebraic relation

1 = 1
= — = - (3.57)
Hj:1(2p+p_ — Hi- +ie) ; (2ptp~ — Hli_ + ie) Hj;ék(Hli_ - HJJ')

the regularized integral becomes:

for 1 - imipt) ()

(3.58)

The function §(p*) appears here, because the integral is strictly zero for p™ # 0, although
integration over p* gives a finite result. The result eq. (3.58) can also be obtained as a limiting
case of eq. (3.53) in the simultaneous limits p;” — p*,Vi. One can check that eq. (3.58) is
the same as the covariant result, using a Wick rotation such that 2p™p~ —p2 — —|p|®. The
limit for H; — H; is well-defined. The constant term has dropped since

n

1
= e (Hy = Hy)

which follows from the fundamental theorem of algebra.

=0, (3.59)




44 3. Equivalence of light-front and covariant field theory

We emphasize here that these zero modes appear in loops where the p™ momentum is
constant along the loop. Zero-modes can be interpreted as an infinite number of states (around
pt = 0) which are infinitely off-shell (p,, = o0), and thus have zero probability for propagation
over a finite distance. The combination of both gives a finite contribution. This is reminiscent
of the ultra-violet divergences, where the large number of high-energy states give an infinite
contribution.

Although zero-modes are needed to obtain the covariant answer, they remain slightly artifi-
cial, which can be seen from the configurations were they occur. It seems that nature is telling
us that the high density of states for high energy causes trouble: divergent integrals appear
which have to be regularized, and zero-modes. Both result from singularities on the light-cone.

3.5.2 Divergences in the fermion loop

In the section on diagrams containing fermions we stated that they could be reduced to l.c.t.-
ordered diagrams, provided no additional singularities would occur. In this section we deal with
these singularities. We state that the regularization proposed here removes all of them. There
remains one point to clarify, i.e., whether the method of regularization does indeed produce
a covariant result. The latter point, however, will not be discussed in this chapter but in the
chapter on renormalization of light-front perturbation theory.

We now have the tools to deal with the singularities in the fermion loop. Earlier (sect.
3.3) we saw that a blink combines two singular terms in such a way that we get a nonsingular
expression. However, in general the low-order terms, with several instantaneous contributions,
are singular by themselves. We will show that the contribution from the contour at infinity
leads to these singularities. After subtraction of the latter the singularities are gone and a
proper recombination of terms will remove apparent singularities.

For Feynman diagrams with at most one boson propagator in a loop there are singular parts
in the contour integration. Even if the diagram would be convergent in the ordinary sense,
i.e., in the covariant or instant-form, it will still be divergent in k™ -integration. The singular
behavior of the fermion propagator on the light front is to blame.

Also in the case of bosons an ambiguity occurred (see sect. 3.5.1). The result did depend
on whether the contour was closed in the lower half plane or in the upper half plane. This
problem could be resolved by choosing a particular combination of contours. We considered
two contours, one consisting of the real axis and a semicircle in the upper half plane, the other
one has the semicircle in the lower half plane. The integral over the real k™ -axis was replaced
by the average of the integrals over these two contours. This regularization turned out to have
a number of desirable properties.

In the case of fermion loops the problem is more complex. A straightforward application
of the residue theorem gives results that depends strongly on the choice of the contour. The
integral is also more divergent than one would expect from naive power counting, and has
noncovariant singularities. At the origin of these problems lies the contribution of the (semi-)
circle at infinity to the contour integral. We have to subtract this contribution. In a sense we
propose a regularization of the contour integral.

For an integral that converges on the real axis, it does not matter whether we close the
contour in the upper or the lower half-plane. This means that the sum of all residues is zero:

> Res; =0. (3.60)



3.5. Technical difficulties 45

ik
-y

Figure 3.15: The difference between the upper-plane contour and the lower-plane contour is the
contour at infinity I's.

If the integration is divergent we have contributions at infinity, which add differently to the
two contours (see fig. 3.15). Therefore the two contours give different results. We denote this
difference by I'. Then we have

D Res; = I'. (3.61)
To solve this problem we “regularize” the residues by subtracting fractions of I',, from them:

D Resi® =) (Res; — ail'e) =0, Y ;=1 (3.62)

(2

We then find the desired result that closing the contour in the upper half plane gives the same
result as closing it in the lower half plane. We will see that the «;'s can be chosen such that
the singularities cancel.

The k™ -integral corresponding to a general Feynman diagram with a fermion loop can be

written as
D — / dk™ (kT 4B (v TR 4 8)
") 2k kb (kT —Hy) (kT - Hy)

We wrote only the structure that depends on kK~ and k™ explicitly. We can consider one
residue at a time, since the singularities of one residue are not canceled by another residue.
The residue of the pole (k~ — H;)~!, and the contribution of the contour at infinity are:

1 (YTH; + 1) - (v H; + B)

(3.63)

Res; okl -kt (Hy— Hy)--- (H; — Hy) (3.64)
e = ﬁ <(ZH1')('Y+""Y+)+(ﬂl""YJr)JF"'+(’Y+'~'6n)>(3,65)
1 o\ i=1

The latter can best be calculated by changing the integration variable to v = (k~)~! and
integrating over a circle around the origin with a small radius, |u| = €. The residue Res; has
only singularities if k;‘ — 0, since then H; — oo. In the limit kj' — 0 only a few terms
survive. The surviving structure is precisely the contribution from the contour at infinity, which
is independent of j

lim Res; =T . (3.66)

k;—»O
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If we decompose the contribution from the contour at infinity now in such a way that each
term contains only one singular point (kJJr — 0), we can subtract these terms from the residues
with the same singularities, and the resulting regularized residues are finite. If we define the
quantities ¢, and Hj" as k; = kT — g and Hj- = 2k H;, then we find that the following

regularized residues are finite for k:J+ —0

re, 1
Res[® = Res; — (2”(k:+—q-+)l_[(q-+—q-+)Hj+
J J v
5 Ht N H; (v )+
~ 2t (kT — ¢ ) () — ¢TI —a)  2°(q) — ") Tllg" —a)
1 (B At 4t (v B) (3.67)

2 (k+ — ) T1(q) —q;)

Since each residue is now regular we know that there is a combination of |.c.t.-ordered diagrams
where each term is convergent. The blink procedure tells us how to do this step-by-step. The
argument above tells us that there are no singularities left.

We killed two birds with one stone: we resolved the ambiguity in the contour integration
and removed the singularities. These two problems are intimately related since the singularity
comes from the pinching of the contour at infinity between the “pole at infinity” and an ordinary
pole.

Another advantage of this procedure is that only the physical sectors are nonzero, a property
that would be destroyed by ordinary contour integration. It allows us to keep a simpler view of
causality and unitarity, where each line is associated with a particle moving forward in I.c.-time.
In nonphysical sectors all the poles are on the same side of the axis. Then formula (3.62) tells
us that the result is zero. We do not know whether this regularization leads to the same
amplitude as the covariant calculations.

Example; vacuum polarization

We will illustrate the procedure from the previous section with an example. The simplest dia-
gram is the vacuum polarization diagram; a closed fermion loop with two fermion propagators.

v [ dET Trly* (v kT + By (VTR + )]
b = 2mi  AkT kS (k= — Hy)(k— — Hy) (3.68)

We deal with the physical sector so we can assume, without loss of generality ImH; > 0 and
ImH; < 0. The result depends on the way the contour is closed. We will close the contour in
the upper half plane. In terms of l.c.t.-ordered diagrams we have the ordinary diagram, with
two propagating fermions, and the diagram with the instantaneous part associated with the
pole Hy in the lower half plane. Together they give the residue of the pole Hy, as expected.

Triy*(yTHi + S1)y" (vt Hi + (2)] )

DM —
! Ak ks (Hy — Hy)

(3.69)
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If we would have chosen to close the contour in the lower half plane the result would be
different. The difference is the result of a finite contribution of the semicircles. We still have
to subtract the fraction of the contour at infinity which is given by (3.67):

onTa = TP (H1+ kyHy | ki H ) Triy* By r*] | Triv*a™” o)
4k{ (ks — k) by —ki K k) AR (k3 — k() 4k (k) *(ﬁ()))

The l.c.t.-ordered diagram obtained has no singularities, and is independent of the direction in
which the contour is closed, since it is symmetric in Hy and Hs:

k} Ho—k] H v (kI Ha—kH
o Tr [’y“ ((72 k;fk%r 1) e +51) Y ((71@571@ 1) vt +ﬁ2)}

reg k] &y (Hy — Hy)

Diw — alfoo =

(3.71)
This result could not be obtained if we would have taken a combination of an upper-plane
semicircle and a lower-plane semicircle, this would give a singular, and thus an ambiguous,
result. The contribution of the contour at infinity should be decomposed in a unique way to
obtain a regular expression.
We will not calculate the amplitude here since the diagram is divergent and the comparison is
with other results is spoiled by renormalization. After this regularization the k*-integration is
automatically finite, since the domain is finite and the integrand is regular. In chapter 5 we will
see that this indeed leads to the covariant amplitude. The singularities which are removed here
correspond to the meaningless divergences. To the contributions of the semicircle we cannot
assign a proper Lorentz structure.

3.5.3 Dynamical spin

In a Hamiltonian theory we separate kinematical variables from dynamical ones. Starting from
one equal-l.c.t surface, we evolve in the time direction to the next equal-l.c.t. surface. In
a covariant formulation, different interaction points could be on the same equal-l.c.t surface.
Constraints should, in a Hamiltonian formulation, account for these parts. A straightforward
interpretation does not exist, the constraints “evolve” with the order in perturbation theory,
and so does the physical Hilbert-space (constraints are imposed on the Hilbert space). We
will illustrate this point with a Hilbert-space interpretation of the instantaneous interaction
v /2pt.

The (p*)~! singularity is ambiguous as it stands. We need a way to look at this part
such that we avoid additional divergences which seem to appear. Note that the spinor-matrix
elements of vT are the same as those of pT. Therefore we might suspect that the occurrence of
~T suppresses the singularity. To make this apparent we use the completeness of the physical
Hilbert space. The physical Hilbert space is spanned by the free states. Therefore we can write
the identity operator as the sum over all states:

1= [ @ W ) ). (3.72)

We use this abstract notation because we don't want to bother with conventions which are not
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relevant. The normalization follows from the idempotency of the identity operator (1- 1 = 1).

W (p)[u® (p)) = @' (p)u® (p) (plp') = 6*P8(p — p'). (3.73)

We can project 7 /(2p™) onto the physical states by applying the identity operator on both
sides:

1.0 = %ﬁ:/d%’d?’pu<a>(p’)><u<“>(p’)l%|u(ﬁ)(p)><u(ﬁ)(p)l

3 o
> [apau e SEE wop) - oL @
af

There is no mixing between upper and lower components because they are spectrally separated.

1= (7“ m bt m) 0(p™) (3.75)

2m 2m

Wherever vt /(2p™) appears we can replace it by 1/(2m), since eq. (3.74) is an operator
identity on our space. The instantaneous interaction can be interpreted as nothing but a point
interaction, 1/(2p™) being the phase space that goes with it and 4 the vertex.

However, these arguments do not hold in a Feynman diagram. The spin plays a dynamical
role. In contrast to the instant-form dynamics, where all components of the angular momen-
tum are kinematical, in front-form dynamics only the z-component of the spin is a kinematical
operator. The other components are involved in the interactions. It turns out that we can
combine the 4% /(2p™) singularity with the 1/p™ singularity that appears in a corresponding
|.c.t.-ordered diagram with a propagating fermion line, such that the singularities of the two
cancel. Thus we find that in a Hamiltonian approach to light-front field theory, there is an
intimate interplay between the singularities of the propagators and a singular piece of the inter-
action. Interestingly enough, this piece occurs even for free particles. In old-fashioned ordinary
time-ordered perturbation theory, i.e., instant form dynamics, the amplitude of propagation
depends on the off-shell energy only, not on the polarization.

3.5.4 Analyticity and covariance

A Feynman amplitude is an analytical function of scalar objects like p?, p; - p;. Often, the real
values of the scalars are the boundary values of the complex domain on which this function is
defined. We use these arguments in order to be able to apply the residue theorem to integration
over the loop variables and to perform Fourier transformations. All contour integrals are finite
(if we don't pinch the contour) and coincide for integrals convergent on the real axis with the
integral along this axis. (A coordinate transformation y = 21, as used in the section on zero
modes, doesn't alter the results, since it maps the real axis on the real axis.) We cannot use
the exponential ¢’ ¥ to improve the convergence along the semicircle of the contour (Jordan's
lemma).

If we integrate over one coordinate separately, manifest covariance is lost. In the case
of integration over ordinary energy this was not much of a problem since we can consider
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p? 4+ m? as real and then analyticity in p® is directly related to analyticity in p,p*. In light-
front coordinates the situation is more complicated since p?> — m? = 2p~pT — (pi + m?).
For real values of the scalar object the complex values of p~ and p™ are related ((p% + m?)
is real). The coordinates are each others complex conjugate. After Wick-rotation (p’ —
—ip®) this remains almost exactly true: p* — p, p~ — —p. For a strip along the real
axis we have: p~Imp"t = —pTImp~. Singularities that occur in a complex function can
be regularized, but the relation between the conjugate variables restricts the possibilities of
regularization. Singularities of an integer order (like 1/x) cannot be integrated by parts. But
one can approach these singularities in parametric space ; o« — —1. The advantage of
this dimensional regularization is that it does not interfere with algebraic rules; the regularized
distributions satisfy the same relations as the singular ones, which is of great important for
complex, analytical functions. For regularization of complex distributions one subtracts these
poles as function of the order but with a fixed difference between the order of the singularity
of p with respect to p: p®p®T* with a fixed k& (Gel'fand & Shilov, 1964).

We will follow a simpler approach with the same result. To avoid complications we define
distributions of covariant objects only. Analyticity of the covariant object tells us the relation
between pT™ and p~ at regularization. A homogeneous distribution is given by the partial
integration of a singular, but integrable, function:

(50) = [ o= [ [ miro] o (3.76)

We need ptp~ for positive imaginary values. So we take the cut of the logarithm along the
negative imaginary axis, therefore the logarithm has an imaginary part of the form iwf(—p*p™).
The homogeneous distribution is

1 - Pvi —ima(p”)3(pt), (3.77)

1 0
— 1 +,,— -97+7 —
—(In[pTp~|+imb(—pTp7)) o+ ico () p

]~ op

where ¢ is the sign function. Therefore 8,+0,- In(p™p~) = 0,-(p™)~* = 27wid(p~)d(p™),
which is nothing but the Mandelstam-Leibbrandt regularization (Leibbrandt, 1987). (The i
can be accounted for through Wick rotating the z-variable.) After Fourier transformation
the distribution In(pTp~ + ie) becomes a singular function which contains the intersection

of the light cone with the null-planes zt = 0V 2z~ = 0: Flln(ptp~ + ie)] = % =
—6%(x)0 (xTa™) + i6% (2L )PVL=. This fact is part of the reason why there exists con-
fusion about the instantaneous term in the fermion propagator. In a Feynman diagram the
integrands are treated as meromorphic functions in the complex plane. The real part is auto-
matically complemented with an imaginary part. If we use a Hamiltonian approach, we will
have constraints which relate real parts to real parts and we express one in terms of the other.
Therefore we might loose some information concerning the behavior of the imaginary parts.
To put it in other words: the off-shell behavior comes naturally in a Feynman diagram and
this does not always happen in a I.c.t.-ordered diagram. This is another reason why we chose
to define light-front field theory in close connection with a formulation in terms of Feynman
diagrams.
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3.6 Proof of equivalence

In this section we have collected several technical aspects of the proof of equivalence. In
sect. 3.2 we gave some examples, in order to illustrate the general procedure. Therefore, we
do not give any examples here.

3.6.1 Energy integration
We present here the proof of the basic theorem on the integration over p~. First we discuss
the case of a single loop. The proof for several loops comes next.

One loop

The integration of a Feynman diagram over one energy loop variable p~ gives the following
expression for the p*-interval corresponding to {(ImH; > 0Ai < m)V (ImH; < 0Ai > m)}:

- dp~ 1
FD(H) :/— =
2m 2Npf---pllp~ — Hi]---[p~ — Hy]
gy=* ... H¥ H 0 1
HY™? ... H} Hy 0 1
i(—1)N+1 ' )1
HN-2 ... g2 H, 0 1 (3.78)
- s m "
2%(py -+ pN)A(HL, -+ Hy) Hyip -+ HZy Hpp 1
Y2 ... HY Hy 1 0

The last factor is a complicated mixed symmetric polynomial in the H;'s that we denote by
(=1)"Wpn(H1, -+, Hyp|Hit1, -+, Hoym).  (The phase factor (—1)M*! is introduced to
simplify the final expressions.) A is the Vandermonde determinant (n > 2):

A(l‘l cee ,J}n) = det[A,»j] y (379)
Ay = a7, (3.80)

A well known result is )
Ay mn) = [] (@i—25). (3.81)

i<j

See for instance MacDonald or Fulton & Harris (MacDonald, 1979; Fulton & Harris, 1991) for
properties of the Vandermonde determinant.
Proof

Depending on the (fixed) values of the (kinematical) p;”'s some poles are above and some
are below the real axis. The integral is computed as 27 times the sum of the residues. The
residue of pole p~ = H; can be written as

A(I{h" '7Hi—1aHi+17"'7HN)
2N(p{ - pN)A(Hy, - Hy)

(1)t (3.82)
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We can add a line and a column to the determinant in the numerator:

3 HN=2 ... g2 H 1 0
HY™® ... H} H@ 1 N mrom 10
HY-? .. H2 Hy 1 2 2 ’
. . N—2
(_1)i+1 H]XIQ I{.Qi1 Hi—l 1] = (—1)N+1 Hlﬁig H?_l Hi_l '
HN-2 ... g2 Hiy, 1 N_2 2 '
z—.i-l i+1 i ' H)\7® -+~ HY, Hiy1 10
N-2 2 y S
HN HN Hy 1 H]]\\;72 H12V Hy 1 0
(3.83)

The final formula is obtained by adding determinants of type eq. (3.83) which amounts to just
adding their last columns. This gives the result stated in the theorem.

Several loops

In the case of several loops we integrate loop by loop. We must use the residue theorem
such that the order of integration does not change the result. In general, the momenta of
the particles on the internal lines will be linear combinations of the integration variables, say
ki =3, afpk, where E!' is the four momentum on line ¢ and p/ is the integration variable.
One has the freedom to choose the latter such that af is either +1, —1 or 0.

Theorem Multi-dimensional energy integration
An unambiguous expression is:

/dp;dpg cedpy, [TOQ S alpy + H) ' =
i=1
(3.84)
(2 -)m Z 1 ﬁ [Oéla2 ” 'amH]jl‘“jmi -
V¥ { o . } [CVlCVQ . am]jr--jm e [CVICVQ - am]jlmjm .
J15J25 5 Im I
[t ot #0

The antisymmetrized product [a!---a™]j,...;, is the determinant of the matrix

aj, oA,
()jyejm == | : (3.85)
@t e all
The inverse of the matrix « will be denoted by &. The poles {ji,--- ,j_'m} that are included

in the sum have for all values of p; the correct imaginary sign of H;/a}, because this sign is
determined by the plus-components of the integration variables. Before we start to integrate
we first determine inside which contours the different poles lie, then drop the ie-description.
This is clearly an invariant formulation, so the order of integration can be altered.

Proof
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An unambiguous way to define the integration is to shift the integration contour slightly
into the complex plane and leave the poles on the real axis. The poles are determined by the
following set of linear equations

> aip; + Hj, =0, dik=1,---m, (3.86)

which have the solution
p; =—Y_ alH, (3.87)
k

D is the specific value for p which satisfy eq. (3.86). Next the multidimensional integral
is written in terms of these new variables. The Jacobian of the transformation is deta =
1/deta = 1/[a!---a™];,...;,.. Subsequently, we apply the residue theorem to every p~-
integration. We substitute the new variables, and find that the pole part of the integral
factorizes:

/Jﬁldzj( , 1(z) _

aizj=m) - (ahz;—Ym)
(3.88)

det[a] / dyp——— . / dym———— f(ay). (3.89)
-7 Ym —Qm7;

We used the summation convention. Note that the integral is independent of the choice of

integration variables.

This type of multi-dimensional complex integration is not related to topology, so the de-
formation of the contour might change the result. The torus obtained by closing the different
contours depends on the choice of coordinates. To avoid ambiguities we take an algebraic view
instead.

3.6.2 Recursion formula

The recursion formula is the basis of the proof of equivalence. It tells us how to take out of any
Feynman diagram the building block of a l.c.t-ordered diagram: an energy denominator. This
happens without changing the structure of the algebraic form of the reduced Feynman diagram,
so we can apply this formula, a number of times (the recursion). The final result, obtained
upon the last application of the recursion formula can immediately be evaluated. The final
object is just a piece of a l.c.t.-ordered diagram (T'OD): a product of energy denominators.

—

The recursion formula allows us to consecutively pull energy denominators out of F.D(H)
in order to obtain a sum of TOD's.
Theorem The following identity is true for any m and n (N =m + n):
Wm,n(Hly"‘7Hm‘Hm+17"';HN) _ 1
A(Hy, -+, Hy) Hy — Hpp

<W(m1),n(H2a e 7Hm‘Hm+17' o 7HN) + Wm,(nfl)(Hlv' o 7Hm‘Hm+27' : ;HN))
A(HQa"';HN) A(Hlv'”aHm7Hm+2,"';HN)

x (3.90)
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Remark

The reduction step removes two poles, H; and H,,+1, and combines them into a single
energy denominator, H; — H,,+1. The second factor of the r.h.s. of eq. (3.90) consists of two
terms, both of which contain one pole less than the original form. The factor (H; — Hyp, 1) 7!
is incorporated in the TOD. At the first stage, Wy, /A is a structure that is directly related
to a Feynman diagram. After taking steps in the reduction algorithm objects with the same
structure are obtained, but these objects are not in the same way associated with (possibly
different) Feynman diagrams. The last step in the algorithm is given by:

W177l(y|x17 Tty I‘n) = W’ml(xla e ,xn|y) = A(xlv e ,l'n) (391)

First we prove the formula (3.90) and then we show how to carry out the reduction.
Proof

First express W, ,, in terms of a determinant as in eq. (3.78). Then perform the usual
manipulations with determinants: take linear combinations of rows or columns. If we subtract
the first row from the rows 2 to m, the m + 15¢ row from the other rows {m+2,---,m+n}
and expand the determinant with respect to the last two columns, we obtain:

15(717{( Tro — I
K. K
X, — s Ty, — X
Wi @1, @l oyn) = (DN R ke S (3.92)
Un =Yl Yn

where K =n+m—2 = N —2. We can add a row and a column to the determinant to obtain:

o~ py -y 0
(—1)m+1 a?ffl—x{( cee Ty — X1 0
AN AR 1Y Q)Y (G — — (3.93)
- l‘}( y}{ Ti—Y1 T1— U .
Yo =¥y 0 Y2 0
Yn —YUL o Ya—yr 0

We split the determinant into two parts by adding and subtracting in the last column the
column (z9 — 1, -+, Ty — 21,0,---,0). Then we subtract the last column from the last but
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one column in both determinants to obtain

o — i 0 To — T1 T Ko 0

K —af Ty — T1
(_1)m+1 sc,Kn—asf . 0 Ty — X1 xfé—xf . 0 T — X1
= w}};—y}f . 0 T =Y |~ l‘}};—yg C T =N 0
Yo —Y1r - Y2— W 0 Yo —Y1r - Y2~ 0
Y Ul ya— 0 Y Ut yn - 0
(3.94)

We add the m-th row to the rows above it in the first determinant, and subtract it from the
rows below it in the second determinant. The result is

i -y - 0 T2 — Y1 o — 2K . 0 To — T
(_1)m+1 xﬁfy{( . 0 T — Y1 (—1)m :Eff,fxf . 0 Ty — X1
o aft —yt - 0 e af =yl - w1y 0

LTyl =y 0 LoVl el gy 0
yE =yl - oy —wm 0 yh —xf - yn—m 0
(3.95)

Let M = n + m — 3 and define for any k the symmetric function ¢*~! by the relation
zk —yk = (z —y)¢*~1(x,y). The rows contain one of the factors x; — x1, y; — 21, y; — Y1 or
x; — x1, that can be divided out. The product of these factors are written as the ratio of two

Vandermonde determinants, to obtain from eq. (3.95):

oM (z2,91) - 0 1 oM (w2, 1) - 0 1

M m L0 1 M m 1
D)™ | A@r T, Y2 Yn, y1) (bM(x w1) - 0 A(z2-yn, 1) (bM(x o) - 0

& (w1, 91) 0 1|+——F—==|¢" (y1,21) 1
T1—1 A(x1Tm, Y2 Yn) ¢k[(y2’y1) 1 0 A(z2-Yn) ¢M(y27ml) 1 0

M (yn,pn) - 10 oM (yn,x1) - 10

(3.96)
The dependence of the first determinant on y; is only apparent. The same is true for the
dependence on x; of the second determinant. We can easily see this through matrix multipli-
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cation:
2" 1 1 "2 (g, Cor+ 11
; ! 1 0 - 00 ¢ ( 1Y) e
: 1 : : :
2 oz, 101 y | e @y o mmty 101
Toai 0 wmp 100 : o0 | e @m,y) 0 Tmaty 100
yn—2 y 1 0 : : : )
: : Do 0 ... 0 0 1 : : Do
ap? @, 10 ¢" (znyy) - aaty 10

(3.97)
The determinant of the second matrix at the l.h.s. is 1, so the determinant of the first matrix
at the l.h.s. is the same as the determinant of the matrix at the r.h.s.. Removing the y;
dependence in the first determinant and the x; dependence in the second we get two familiar
objects:

x{w -z 0 1 xéw - xe 01
(=" —A(z1-yn) =2 . oz, 1 Aziyn) |2M -z, 1

M N7 N M (398)
z1— Y1 | Al@rZm,y2-yn) Y2 - Y2 1 0] A(z2yn) |y1 - vy 1 0

yn' - ym 10 v’ ym 10

These determinants are nothing but W-functions, but now with less arguments than we started
with. So we can write eq. (3.98) as follows

A1 yn) (Wm,nl(w1-~-wmlyz~-yn) n Wml,n(@"'xmyl”'yn)) (3.99)
T1— A(@1 - T, Y2 Yn) Al@zyn)

If we divide the whole expression by A(z1 - - - y,) we get the reduction formula.

3.6.3 Reduction algorithm

We will now show that the application of the formula derived above gives us parts of l.c.t-
ordered diagrams. First we need to specify the structure of a l.c.t.-ordered diagram.
Definition Loop connection tuple

The loop connection tuple H= (Hy,---,Hy,) is an ordered set of objects related to the

2 2
Piitmy

propagator denominators pf—m?—l—z’e = 2pj+(p*—Hj) orHj =p~—p;+ ot The ordering

of the tuple corresponds to consecutive ordering of the internal lines in the cgrresponding loop
in a Feynman diagram.

We will use the terminology of “lines” when we mean the corresponding momentum or
energy, or state. There is some arbitrariness in the definition of the momenta in the loop,
but in the objects of interest H; — H; this arbitrariness is gone because they are invariant
under a shift of the loop momentum (p* — p# + a**). The expression H; — H; is the total
incoming Y P__, momentum minus the on-shell values of the minus-momenta of the internal
lines Dy on—shell T Pj.on—shell calculated with the help of p;"] and pf)-j. (See also sect. 3.2.2.)
Definition Backward and forward
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A line i of the loop connection tuple is going backward if the object H; has a positive imag-
inary part and is going forward if it has negative imaginary part. Thus in the Feynman diagram
above, eq. (3.78), Hy,- - -, H,, are going forward and H,,,.1, - -, Hy are going backward. The
sign of the imaginary part is opposite to the sign of the on-shell energy of the particle, therefore
this definition of backward and forward coincides with the causality condition: positive-energy
particles go forward in l.c. time and negative-energy particles go backward in l.c. time.
Definition Early, late and trivial events

An early event is a vertex between a backward and a forward going line, a late event is a
vertex between a forward and a backward going line, if one goes around the loop in the order
corresponding to the connection tuple. All other vertices are trivial events.

There are equal numbers of early and late events.

Definition Flat loop diagrams

A flat loop diagram has one early (and thus one late) event.
Definition Crossed loop diagrams

A crossed loop has more than one early event.

Definition Skeleton graph

A skeleton graph is the tuple of signs of the objects H; of a connection tuple. It is given
by the mapping {H1, Ha,- -+, Hp,} — {c(ImH;),0(ImH>),---,0(ImH,)}. The function o
is the sign function.

For different external momenta in the Feynman graph we have a different set of skeleton
graphs, and for each Feynman diagram there are a number of skeleton graphs. For each
sector (associated with a specific number of poles above and below the real axis) of the loop
momentum p* there is a skeleton graph, thus for a loop with n lines there are n — 1 skeleton
graphs.

The skeleton graph already tells us the general features of the |.c.t.-ordered diagrams which
are contained in a Feynman diagram, because it tells us the direction of the internal lines. This
is used as our guide how to take “time-slices” of the Feynman diagram. The direction of a line
tells us in which order we can encounter events (vertices). Early and late events correspond to
sign changes in the skeleton graph.

Definition Causally connected events

Two events are causally connected if they lie on the same loop and there are neither early
nor late events lying in between.

So, two causally connected events are connected by parts of a loop that consist of lines
that are either all forward or all backward.

Remark

Clearly, it makes sense to say that causally connected events are ordered in l.c. time. If we
follow a loop in the direction given by the orientation defined by its connection tuple, then we
will encounter forward and backward going lines. If two vertices are connected by a forward
line, they are said to be ordered in l.c. time in the same way as they are ordered in the loop.
Otherwise their order in l.c. time is the reverse of their order in the loop. This partial ordering,
which is given by the skeleton graph, is obviously not complete. Only causally connected events
are mutually ordered this way, but not with respect to other events.

Note that we don't make any statements here about reducible Feynman diagrams, which is
a completely different story. Our causally unconnected parts connect up a later time, so they
are parts of the same irreducible Feynman diagram.

Definition Simultaneous
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Two parts of a skeleton graph are said to be simultaneous if they do not share events that
are causally connected.
Remark

The flat box that we discussed in sect. 3.2 consisted of a late and an early vertex, connected
by two distinct parts of the loop, one consisting of lines graded +, the other of lines graded —.
The relative |l.c.t.-ordering of the events on these two parts is not necessarily determined by the
skeleton graph, but application of the reduction formula, eq. (3.90), produced immediately the
two possible I.c.t. orderings. The diagrams found showed the expected energy denominators.

In situations where two simultaneous parts occur, the reduction formula does not provide
immediately the l.c.t.-ordered diagrams. An example was given in sect. 3.2.1. From the point
of view of |.c. time ordering, one expects diagrams to occur corresponding to all relative l.c.t.
orderings of simultaneous parts. In momentum-energy language this means that diagrams with
certain energy denominators should occur. Indeed, this is the content of the next theorem.

Theorem Simultaneous parts come in all combinations.
Remark

The proof of this theorem relies again on a recursion. First we suppose that we have
two simultaneous parts, that are already ordered by themselves, but not mutually. Both parts
correspond to sets of energy denominators, say {a} and {3}. So we have the two distinct
TOD's Hai_l and Hﬁj_l. In this language the content of the theorem can be written as

{{iws i ol [{ins Gt # L, g A Tk < 1= (ie < i) A (e < 30)]}

m n m—+n
Ha;l Hﬁ;l = Z H (aik +6jk)_1' (3100)
i=1 j=1 all iy,jx k=1
Proof
We apply the formula:

m n 1 m—1 n m n—1

e 1187 =——— > | [T o' 1157 + [ I] 55" (3.101)

i=1 j=1 m + On i=1 j=1 i=1 j=1

We can apply this algorithm recursively to obtain ("t™) TOD'’s with energy denominators of
the form ) «; + > 8;. If the product consists of more than two TOD's we can apply this
algorithm recursively, to two TTOD's at a time, since it is associative.

The expressions obtained are composite energy denominators:

(P (a) — Ho(a)) + (P~ (8) — Ho(8)) = P~(aU ) — Ho(a U B). (3.102)

3.6.4 Reduction of Feynman diagrams

The previous sections were mainly concerned with algebraic identities. Now we turn to the
general strategy of the reduction. The reduction algorithm for a flat loop is straightforward as
we noted when we discussed simultaneous parts. The trivial vertices come in all orderings of
vertices on the forward line (ImH < 0) with respect to those on the backward line (ImH > 0).
The vertices on one line are already ordered with respect to each other by the skeleton graph.
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Starting with the early event one can reduce the lines next to the early event. This algorithm
ends and gives 2V =2 TOD's if the loop is flat for all skeleton graphs. For each skeleton graph
there are (N =2) TOD's.

m—1

Mapping

The mapping from a recursive algorithm to a time-ordered theory is straightforward for the
flat loop. The order in which the poles H; are removed in the reduction formula is the same
as the time ordering. We refer to this reduction as time ordered reduction.

A flat Feynman diagram gives the topology of all ’OD's contained in it and all combinations
between trivial events appear respecting the causal order. Conservation of p™-momentum
determines whether a trivial vertex is an absorptive or emissive event. However, this is not a
new element, because we have seen that a skeleton graph is determined by the external lines
besides the value of the plus-component of the loop momentum. Of course, early events absorb
external particles while late events emit them.

Because Feynman diagrams form the basis of our treatment of light-front field theory,
the basic elements we are concerned with are the single particle propagators and the vertices
derived from the underlying Lagrangian. The interaction H;,; is derived from L;,; with an

—1
additional phase-space factor (\/ZNp;Lp;r cpk ) where the longitudinal momenta of all the

lines from a vertex are included. A wave function must also be multiplied with the phase factor,
as compared to the covariant wave function.

For the success of our reduction algorithm the details of £;,; are of minor importance. The
algebra is connected to plus-momentum flow in loops. The only internal lines in the diagram
of interest are those in the loop, how momentum is extracted from and added to the loop is
of less importance.

The most important feature of the reduction algorithm is the fact that it always starts from
an early state with positive longitudinal momentum (there is always an early state as the result
of momentum conservation), so we exclude “vacuum"-type diagrams.

First, reduction is performed on the skeleton graph starting from the early events, i.e.,
removing lines directly connected to the early events. This can be followed by removing poles
corresponding to consecutive pieces of the loop until a late vertex is reached. This is the point
where W,, /A is reduced to a sum of terms of the form W; ;1 /A’ or W7 ;,/A”. Secondly, the
simultaneous-parts theorem is applied to write all these terms as sums of terms containing true
energy denominators

Because we could have started the reduction from the late vertices in stead of the early
ones, we see that the algorithm can be written in different ways. The final result, however, is
the same. The same is true, mutatis mutandis, for the application of the simultaneous-parts
theorem.

So we peel off more and more of the Feynman diagram in a manner which is locally (for
causally connected events) equal to time ordered reduction.

The relation of the results of the reduction process to |.c.t.-ordered diagrams in the crossed
loop case is more complicated than in the case of a flat loop. The simple heuristic of cutting
lines representing constant l.c. time surfaces leads to a more elaborate bookkeeping in the
crossed-loop case. This is so, because only the global structure of the Feynman diagram
determines which simultaneous parts are joined by early or late vertices. The general strategy
proposed here is to start at an early vertex, use the reduction algorithm locally until a late
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vertex is attained. This procedure is to be repeated until all late vertices have been processed.
Next apply the simultaneous-parts theorem repeatedly.
Extension mapping

Multi-loop diagrams can be reduced one loop after another. The loop momenta that are
not integrated over are kept fixed. The skeleton graph tells us again what is the general form
of the time-ordered diagrams. Therefore, the skeleton graphs, associated with different finite
domains in pt-space need to be determined first.

Upon application of the reduction algorithm to the first loop, energy denominators occur
that are combinations of two propagator poles. When the next loop is treated, some poles
come from those energy denominators, while the others are due to propagator poles occurring
in the part of the original Feynman diagram unaltered by the reduction so far. These different
types of poles play the same role in the integration over the next variable. The pole is again
the difference of the p~-flow and the on-shell energies from the poles and their associated
lines in the Feynman diagram. The question which lines must be combined to generate energy
denominators is related to the imaginary parts of the propagator poles and thus answered
when the skeleton graph is determined. During the reduction process these combinations
remain fixed.

The integration is invariant under coordinate transformations and reordering of the integra-
tions. The mapping from a recursive algorithm to a l.c.t.-ordered approach is more complicated
here than in the single-loop case, but in essence the same. The most complicated task is the
construction of the skeleton graphs. After this job is done, the reduction algorithm is applied
to one loop after another, and the interpretation of the result is the same as in the case of one
loop.

Theorem Spectrum condition

The spectrum condition p™ > 0 holds for all particles in the internal loops of the Feynman
diagram.
Proof

The spectrum condition follows from two ingredients. First, at any vertex there is con-
servation of four-momentum, in particular plus-momentum. Secondly, lines with negative p™,
anti-particle lines, can be reinterpreted as particle lines with positive p™ by reversing the direc-
tion of the four momentum on such lines. This reversal is in agreement with four-momentum
conservation and l.c.t. ordering. This statement is not completely trivial; the time ordering
must coincide with the p™ flow through the diagram.

3.6.5 Methods of proof

In the sections above we have not given complete proofs for general cases. We restricted
ourselves in writing down the rules along which a proof can proceed in each specific case. As
proven above, each rule is an algebraic relation, such as egs. (3.78), (3.90), and (3.100). The
set of rules defines an algorithm (Bergstra & Klop, 1989), which reduces a specific diagram to
the required time-ordered form. A rule is used to replace an expression by another expression at
all places where the first expression is found. This process is defined iteratively and recursively.
Such an algorithm is valid as proof when it stops at and only at the final form and this form
is unique. This unique form is the complete set of time-ordered diagrams associated with
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each Feynman diagram. Therefore it should only be possible to apply the rule at one of the
subexpressions of the total expression at each stage of the calculation.

When a rule can be applied at different places at the same time we end up with different
intermediate results and it will be hard to check whether these will lead to the same final
answer. If the regions in which the rules can be applied are disconnected the problem of the
simultaneous application is easily cured, since the application of both rules will lead to an
unique answer independent of the order in which the rules are applied. When two rules can
be applied to overlapping regions of the same expression we have a more serious problem.
After applying one rule, the other rule cannot be applied anymore and we have two distinct
intermediate results of which it will be hard to check whether they lead to the same final
answer.

In our case we supplied each rule with a priority. We ordered the rules. If two rules can be
applied at the same time the rule with the highest priority is applied first. Therefore the order
in which the rules are applied is unique and the final answer is unique. Whether the final answer
is correct can only be inferred from the correctness of the rules at each step of the calculation.
As we are not able to show the equivalence between a Feynman diagram and some definite set
of time-ordered diagrams, we must be satisfied with an indirect proof. That is, we conjecture
that the local properties of the diagram uniquely determine its global properties. The local
properties, such as the spectrum condition, are maintained by each step of the algorithm. For
a number of examples this conjecture holds. For these examples it was simple to determine
the complete set of time-ordered diagrams. It was found that these time-ordered diagrams
coincided with the diagrams obtained using the algorithm.

3.7 Discussion

We have established the degree of equivalence between light-cone-time ordered perturbation
theory and covariant perturbation theory for spin-0 and spin-1/2 particles. This effort might
seem superfluous since the connection between ordinary time-ordered perturbation theory and
covariant perturbation theory is well established (Feynman, 1949). One might be tempted
to believe that the methods that work in the case of ordinary time-dependent perturbation
theory apply to the l.c.t.-ordered theory too. This belief belongs to folklore. In practice the
understanding of light-front field theory is growing only slowly. Basic results in covariant field
theory were obtained in light-front field theory along a path through much trial and error. It
took years to formulate a proper light-front version of the Schwinger-model (McCartor, 1988;
Heinzl et al., 1991a) and to prove spontaneous symmetry breaking in the light-front version
of ¢t (Pinsky & van de Sande, 1994; Heinzl et al., 1992; Heinzl et al., 1991b; Robertson,
1993). The renormalization of light-front versions of known covariant, renormalizable field
theories is still an unsolved problem (Perry, 1993; Perry, 1994b; Perry & Wilson, 1993; Glazek
& Wilson, 1993). In general, approaches are followed that are specially tuned to the problems
of light-front field theory. Therefore it turns out to be difficult to relate the solutions obtained
to basic results in covariant field theory (Thorn, 1979; Mustaki et al., 1991).

In chapter 5 we present a method for renormalization which gives covariant results and a
proper interpretation of the longitudinal singularities. That chapter forms the final part in the
proof of equivalence between the light-front perturbation theory and the covariant perturbation
theory.
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A different approach to dimensional
regularization

I n this chapter we investigate dimensional regularization and the features which make

it stand out against all other regularization schemes. If we want to use the useful
features of dimensional regularization for time-ordered theories we will need to reformulate the
scheme. The ordinary scheme depends heavily on the use of covariant perturbation theory, in
the form of Feynman diagrams, and Feynman parametrization of the integrands. In the case
of time-ordered theories we cannot use these techniques.

Dimensional regularization can be formulated such that integrands of divergent integrals are
algebraically related to each other; associated with each integrand with an arbitrary degree of
divergence there exists an integrand which is logarithmically divergent and has the same finite
part. For the treatment of logarithmically divergent integrals different methods can be used.
The pole subtraction in dimensional regularization actually deals only with these logarithmic
divergences. However, the pole subtraction turns out not to be useful for time-ordered theories
for the reasons given above. Logarithmic divergences are easy to cope with since different
renormalization schemes will yield results that differ at most a constant.

The regularization method derived in this chapter has practical values. In time-ordered
theories expressions tend to get out of control. The regularization derived is straightforward
and can be implemented in a computer program which does algebraic manipulations. The
integrals which need to be calculated numerically are finite and relatively well behaving. In this
chapter we deal with the nucleon self-energy as an example.

4.1 Introduction

Dimensional regularization ('t Hooft & Veltman, 1972) is used routinely nowadays for manifestly
covariant formulations of relativistic quantized field theories, notably gauge theories.

It is well known that the basic procedure of dimensional regularization is the continuation of
integrals in dimension space. Divergencies which occur as poles at the physical dimension, are
subtracted. Despite its popularity, dimensional regularization remains somewhat mysterious,
since it is difficult to attach a physical meaning to a non-integer dimension space. The result
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of writing divergent integrals in perturbation theory as functions of the space-time dimension
d are expressions that have poles for integer values of d starting from the dimension of the
loop space where the integral diverges logarithmically. In between those poles the integrals
attain finite values, which is counterintuitive. One would expect an interpolating formula such
that the degree of divergence rises monotonously when d increases from the value where the
integrals diverge logarithmically.

If one examines the procedure of dimensional regularization in more detail, one finds that
there are indeed infinities that do not occur as poles in d. Those are the surface terms which
occur upon partial integration and are discarded. These parts are pure numbers. Removal
of the surface terms is a purely algebraic procedure and based on dimensional analysis. The
remaining poles in dimension space at each of the dimensions where the original integral is
divergent, are the residual logarithmic divergences which cannot be treated using dimensional
analysis. The actual regularization deals only with the subtraction of the latter divergences.

We introduce a procedure where this algebraic nature of the procedure of lowering the
divergences to logarithmic ones comes about naturally and shows its close connection with
dimensional analysis. Because our formalism differs in some respects from conventional dimen-
sional regularization, the fact that the results of our method agree with those obtained using
dimensional regularization, sheds some new light on the nature of dimensional regularization:
is it an analytical or an algebraic procedure (de Wit & Smith, 1986)?

Our motivation is mainly practical. We wish to apply the results to Hamiltonian field theory.
Although Hamiltonian field theory is more difficult and less elegant than the covariant approach,
the physics is more transparent. Indeed, for the calculation of bound states, which goes beyond
the realm of perturbation theory, the clear physical picture provided by the Hamiltonian method,
is a handle to hold on to.

In particular we have in mind light-front field theory, but we will show below that our
formalism can be used for ordinary time-ordered theories (" old-fashioned perturbation theory")
as well. In these cases we cannot use the machinery designed for Feynman diagrams due to
the presence of, e.g., square roots (like y/p? + m?) in ordinary time-ordered field theory, or
hyperbolic forms (like p~! + p) in light-cone time-ordered theory. We cannot use Feynman
parametrization, Wick-rotation and the limited table of dimensionally regularized integrals.

Often, the behavior of integrals is argued on the basis of a dimensional analysis. In the case
of manifestly covariant expressions, this analysis is based on the Euclidian forms of propagators
after a Wick rotation has been performed. Our method has the novel property that it can
be applied to expressions that are not manifestly covariant. This is of interest especially for
light-front field theory where one separates longitudinal and transverse dimensions.

Nowadays, most authors are only interested in singularities of Green's functions in config-
uration space and their renormalizability. These singularities are independent of the masses
occurring. As the expressions become simpler in massless theories, and results can be derived
which cannot be obtained in massive theories, they use effective massless theories with the
same high-energy behavior. We have the opposite interest; we would like to know the behavior
in the physical range of the (effective) theory; in the range of the masses that occur. Therefore
we need a method which can remove the divergences irrespectively of the (complicated) form
of the integrands, and would also allow for numerical implementation. This method turns out
to have a close relation to the BPHZ scheme (Hepp, 1966; Speer, 1967; Hahn & Zimmer-
mann, 1968; Zimmermann, 1968; Zimmermann, 1969; Caswell & Kennedy, 1982), where also
finite integrals are obtained. BPHZ became in disuse due to computational difficulties not



4.2. Renormalization 63

shared with dimensional regularization. We feel that our reformulation combines the elegance
of dimensional regularization with the advantages of BPHZ.

For completeness we mention the work of Symanzik (Symanzik, 1981) who performed a
related investigation of the divergences of field theories with boundaries, which can be applied
to Schrodinger-like field theory where the boundaries act as initial and final time surfaces. Note
that in standard time-ordered perturbation theory these surfaces are absent (see sect. 4.4).

Before the regularization described in this chapter can be applied to light-front field theory
some additional investigations are required. This will be done in the next chapter.

The organization of this chapter is as follows. After a very brief section where we discuss
our point of view on renormalization, section 4.3 describes our method, and in section 4.4 we
reformulate it for time-ordered perturbation theory. The next section is devoted to overlapping
divergences. The relation with dimensional regularization is described in section 4.6. A novel
way to deal with the logarithmic divergences is given in section 4.7, illustrated with one example.
We discuss the application to gauge theories in the next section. In section 4.9 we treat the
nucleon self-energy, where we regularize separately the forward and backward diagram through
local subtractions. Independently, the diagrams are non-covariant and give rise to different
corrections to the off-shell propagator. The main part ends with some concluding remarks.
Finally, some technical details are given in an appendix.

4.2 Renormalization

Renormalization is the procedure of subtracting divergent, hence meaningless, terms from a
perturbative expansion, at the same time motivating this procedure by including the subtracted
parts in an infinite rescaling of the parameters that occur in the theory. The physical values
of the parameters are observed but turn out not to be the values which are related to the free
theory: Interaction does not only create the possibility of scattering but also "dresses” free
particles and "screens” the charges. This effect changes the charge and the mass by an infinite
amount, but fortunately this is largely concentrated at the position of the bare particle. So we
can redefine the bare particle as the bare particle which includes these infinite effects, at each
order in perturbation theory.

Because these effects are infinite, they are hard to handle. The infinities occur in a per-
turbative expansion defined in terms of integrals over momentum space. In momentum space
the idea of a local interaction is abstract, usually understood as a number times a polynomial
in the momenta. This makes the subtraction principle also slightly abstract: What is an in-
finite number times a polynomial in terms of a divergent integral? Usually one introduces a
regularization which makes the theory finite. The regularization depends on a parameter and
the regularized expression can be separated into a finite part and a part that grows without
bounds when the regularization is removed. The growing part must be, or converge! to, a
local expression. This part is subtracted using a regulator. The success of a regularization
depends largely on which properties (e.g., covariance, gauge invariance) are invariant under
regularization. Dimensional regularization turned out to be the most successful one ('t Hooft
& Veltman, 1972), (Bollini & Giambiagi, 1972), (Leibbrandt, 1975), (Muta, 1987). It uses

1Some authors tend to attach some physical meaning to the convergence to a local expression. How-
ever, the convergence only exists within the mathematical framework of regularization and it is rather
meaningless since it becomes multiplied with an infinite number.
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analytical continuation in the dimension of the integral, and separates the divergent numbers
associated with the local parts as a pole in dimension space.

A disadvantage of dimensional regularization is that it still needs regulators, and does not
render the theory finite like BPHZ does. In BPHZ the integrands are made finite and the
counterterms are automatically subtracted (Collins, 1984). The core of BPHZ is the Taylor
expansion in the external momenta, such that the local parts associated with the polynomials
in external momenta are found and subtracted, rendering the integrals finite.

Dimensional regularization has always been associated with Feynman diagrams and Feyn-
man integrals; it does not simply allow the inclusion of wave functions and it does not work for
time-ordered Hamiltonian theories. Especially for the use in Hamiltonian perturbation theory
we want to create a happy marriage between BPHZ and dimensional regularization.

4.3 Dimensional analysis

In a perturbative expansion of field theory by means of Feynman rules only a limited number
of objects occur in an arbitrary diagram. For these objects (i.e., propagators, vertices) we
can write down a dimensional operator of which the propagators are eigenfunctions with their
dimension as eigenvalue. This operator is

D+V. (4.1)

D contains the external variables, masses and external momenta, and V is a similar operator
for loop momenta?. The explicit forms of these objects are:

-l
|

sz Z (4.2)

v Zkz W (4.3)

The corresponding eigenvalues are given by the relations:

1 1

D+V)s—z = 2m e (4.4)
p+m [Pt

DAV) e = ~lr (4.5)

where p is a linear combination of the internal and external momenta.

Other objects, like vector-boson propagators and derivative couplings are also eigenfunctions
of the dimensional operator, but we will consider the simple case of fermions and bosons without
derivative couplings. The extension to derivative couplings is trivial. Any integrand or part
of an integrand, Ig, defining a Feynman amplitude, is an eigenfunction of the dimensional
operator and the eigenvalue, I'g, is obtained by simple power counting:

2Throughout this chapter we will use p for external momenta and k for loop momenta.
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(D+ V)Ig =Tglg = —(2 number of boson lines 4+ number of fermion lines ) Ig. (4.6)

Obviously, in d-dimensional space the integral is convergent only if d +I'¢ < 0. We can also
use partial integration to rewrite an integrand. The divergence of an integral is the leading
behavior of the integrand as the loop momenta tend to infinity. The divergence depends on
the dimension of the space. In dimensional regularization partial integration is used to extend
the domain of convergence in dimension space of an integral. Then surface terms occur that
satisfy the equation

surface term =1+ LV, (4.7)
ng d
where ng is the number of loops in the integrand Ig, d is the dimension of the space. 't Hooft
and Veltman ('t Hooft & Veltman, 1972) call this the partial k operation. Generally, the
surface term of the sphere at infinity is neglected, although not all authors using dimensional
regularization mention this. We will discuss the neglect of the surface term at some length in
the section on dimensional regularization (sect. 4.6), and only say here that the physics should
not depend on what happens at infinite values of the loop momenta. The dimensional operator
and the partial k operation form the fundamental tools of this chapter.
If we set the surface term equal to zero and insert eq. (4.7) in eq. (4.6), then we obtain
the degree of divergence dg of Ig:

Dilg =dglg = (ngd + Fg)]g. (4.8)

Note that the l.h.s. is less divergent than the r.h.s. The equality sign only implies that the
finite parts of the integrals are the same. It is possible to extend this equation in such a way
that it includes different orders in perturbation theory (see sect. 4.11.1).

Formula (4.8) can also be applied to an arbitrary part of an integrand. Then only the
momenta k corresponding to loops which are fully contained in such a part are treated as
internal variables, all other momenta are treated as external variables. The degree of divergence
depends on which part of the integrand is selected, and thus over which integration variables
integration is performed. (We expect the reader to identify the proper divergent parts of a
diagram. A detailed discussion of subdiagrams and divergences can be found in (Collins, 1984;
Caswell & Kennedy, 1982).) For each part G’ taken from a diagram G, such that G’ C G,
the integrand Ig factorizes into two parts: Ig = Ig:Ig\g/. The dimension is additive and the
number of loops is exclusive additive:

ngd + Fg = (ngrd + Fg/) + (’I’Lg\gld + Fg\gz) + (ng —Nng\g’ — ng,)d (49)

The last term contains the number of loops that are cut to separate G’ from G\ G’. To find
all the divergences in the general case is a difficult combinatorial problem. In order to prove
renormalizability of a theory, it is necessary to deal with that problem. However, as long as the
way to deal with divergences is straightforward, we will not need this machinery.

The integrand on the l.h.s. of eq. (4.8) has a lower degree of divergence than the integrand
on the r.h.s. If one allows the space to have an arbitrary number of dimensions, eq. (4.8) is a
simple way to obtain egs. (13), (26) and (31) in ('t Hooft & Veltman, 1972). If the integral
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is logarithmically divergent, 6 = 0 (or § = n(d — 4) if we have an arbitrary dimension), then
eq. (4.8) is homogeneous, DI = 0. Higher order divergences can always be related to lower
order divergences. Applying the D-operation twice does not decrease the divergence since
the differentiation of the second D acts on the momenta occurring in the first D, keeping
the degree the same. To decrease the divergence at every application of D we must place
all momenta and masses to the left of all differentiations. We call this the normal-ordered
D-operation which can be obtained in a relatively simple way from the ordinary D-operation.
The definition is

: D™
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The sum runs over all combinations of external momenta and masses. This immediately relates
any divergent integral, with degree of divergence say ¢, to a logarithmically divergent integral:

5!
D = ———T 4.11
DT = 4, (4.12)
DL = 0. (4.13)

Similar formulae are obtained in dimensional regularization by continuing the dimension to
non-integer values. Therefore the factorials are usually written as gamma functions. In our
derivation we keep the dimension d fixed and integer.

The relations above relate expressions with different degrees of divergence. The terms with
higher order divergence are equal to terms with lower order divergence up to homogeneous
terms of the D-operations, which are polynomials in the external momenta and the masses,
up to order §. The polynomials are the local expressions mentioned before; they are subtracted
in a renormalization prescription. The D-operation removes the divergences which are local
and thus automatically regularizes the expression. If we succeed to remove the logarithmic
divergences we have a renormalization prescription without regulators. We will discuss the
logarithmic divergences in a later section (sect. 4.7). In a renormalizable theory the subtracted
parts can be written as terms in the original Lagrangian with infinitely rescaled parameters, e.g.,
masses and coupling constants. Which counterterms are necessary, and whether they are gen-
erated by the original Lagrangian, can be analyzed separately by standard dimensional analysis
and has not much to do with the actual subtraction, apart from problems with anomalies.

As long as our operations act on integrands, we encounter local counterterms only. As
soon as integrals are performed, we obtain nonlocal® expressions of the same degree as the
counterterms. So if we subtract parts of the integrand we preserve locality. A similar procedure
is followed in BPHZ renormalization. The D-operation should commute with the integration,

3The discussion of the locality of counterterms has always been rather formal, we are no exception.
Locality and momentum space are on different sides of the same coin: one can look at one side at a time
only.
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therefore the homogeneous relation eq. (4.13), should hold for the amplitude. Indeed, we see
that this is true for the ¢ one-loop self-energy (see sect. 4.11.2):

[p2 — /
D tant — tanh =0, 4.14
<con5 an ——arctan 4m2 > (4.14)

which expresses the fact that the amplitude has the proper dimension.

As mentioned before one sees that the integration leads to non-local terms (non-polynomial
expressions) which also vanish under differentiation, which shows some of the subtilities of
locality. In the divergent integral the constant is infinite. Renormalization in this case means
changing the constant: changing the infinite constant into a finite constant, and reabsorbing
the infinite part in the definition of the Langrangian. A finite renormalization (oversubtraction)
may change the value of the finite constant.

4.4 Time-ordered perturbation theory

Since the D-operation contains only external momenta it should commute with integrations in
general. In the case of time-ordered diagrams (Heitler, 1954) or "old-fashioned perturbation
theory” (Weinberg, 1966) or theories formulated in terms of Goldstone diagrams (Koltun &
Eisenberg, 1988), we can derive the same relation. In diagrams occurring in time-ordered
perturbation theory the loop momenta do not contain the energy variable, so we need to
introduce a new operation in this case, that we call V, defined as:

= - 0
=> kj—, (4.15)
T Ok;
which does not contain the energy-components of the loop momenta k;. The operator partial
k, eq. (4.7), also changes since now the dimension is one less than in the covariant case:

1= ! v (4.16)

 on(d-1)"" '

Again we set the surface term equal to zero.

If we take the integrand of the integral corresponding to an arbitrary time-ordered diagram,
we see that indeed it is an eigenfunction of the dimensional operator D + V, because all the
factors that appear in a time-ordered diagram are either linear or square roots of quadratic
expressions (schematically):

— (1 +ma) - (Pr +my)
(D—’_V)El"'Em(p? _E11 —E12)-~-(p2 _Esl _E52)

_T (1 +ma)--- (pr +my)
B 1—‘El te Em(p(l) - Eh - E12) e (pg - Esl — ESQ) ' (417)

Where T is also given by simple counting arguments:

T = —#lines — #intermediate states + #spin projections. (4.18)
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The lines account for the phase-factors E;l, the energy denominators (p9 — Ej, --- Ej;, )"

are given by the intermediate states. If we now apply the partial k operation, eq. (4.16), we
find for the time-ordered diagram the same degree § as we would find for a covariant diagram
that has the same topology, because the number of intermediate states equals the number of
lines minus the number of loops. Thus:

D-[timcfordcrcd = 5Itimcfordcrcda (419)

with the same merits as in the covariant case. One can obtain time-ordered diagrams from
Feynman diagrams through integration over the intermediate energies, as we have seen in
chapter 3. The residues obtained from contour integration satisfy the same relation, eq. (4.18),
but the § occurring is not the degree of divergence of each residue separately. Each residue
restricts k to an on-shell value determined from (p + k)% = m?, therefore the k? terms are of
the same order of divergence as the p - k terms. The l.h.s. as well as the r.h.s. contain higher
order divergences which are not lowered by the D-operation because the leading order terms
in the denominator are p - k which are not altered by the D-operation:

1 1
prrm?tp-k o premiip-k
The lower order terms tend to zero faster than |p - k| =1, which is the behavior of the leading
order term. Only after recombining the residues in such a way that time-ordered diagrams
emerge, these higher-order divergences cancel and the D-operation lowers the divergence. If
we consider, for example, the scalar loop, we will see that this happens. The Feynman diagram
is given by:

+ lower order terms (4.20)

1
4 . 4.21
/d T = i (2 —m? +ie) (421)
The residue of the pole at k* = k2 + m?2 is
! (4.22)

—27ri/d3k = = —,
2 k2+m2(p2+2p0\/k:2+m2+2ﬁ-k)

which is clearly linearly divergent, but contains terms odd in k. A similar expression can be

obtained for the pole at k* + p® = 1/(k + p)2 + m2. If we combine the two residues we will

recover the two time-ordered diagrams with logarithmic divergences and the terms linear in k
will have disappeared:

—omi / &k ! (4.23)
VK2 +m2\/ (F+ k)2 + m? (po— VE2 +m? — (ﬁ+E)2+m2>

and

—2m’/d3k ! :
2Vk2 +m2y/ (5 + k)2 + m? (po +VEZ+m2 +\/(F+ k)2 + m2)

(4.24)
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In the case of light-cone time-ordered perturbation theory, where a light-like direction is
used as “time" direction, this recombination does not occur and higher divergences remain. We
analyzed renormalization of light-cone time-ordered perturbation theory in the next chapter.

In the spectator model (Gross, 1993) the same higher order divergences are present. In
this model one of the lines of the Feynman diagram, with one loop, is set on-shell which is
equivalent to the use the residue of one pole. The divergences do not cancel because the other
poles are neglected in the spectator model.

4.5 Overlapping divergences and all that

Finding the proper counterterms for each specific diagram is a difficult problem. The problems
are largely of a combinatorial nature and similar to the question of finding all the Feynman
diagrams of a specific order. There are a number of authors who wrote down general formulae
for counterterms (Hepp, 1966; Speer, 1967; Hahn & Zimmermann, 1968; Zimmermann, 1968;
Zimmermann, 1969; Caswell & Kennedy, 1982), we will not do so. We only want to make
apparent that we can reduce all the divergences to logarithmic divergences in the same way as we
did in the simple case, and that this treatment does not essentially interfere with the presence of
overlapping divergences or subdivergences. Our treatment is similar to the treatment of 't Hooft
and Veltman, with the advantage that we do not have to discuss the nature of the regulators
or whether non-polynomial parts cancel each other. To each part of a diagram we can apply
the D-operation, with the stipulation that for some parts some loop momenta act as external
momenta. We might have excluded parts of the integrand where these loop momenta also
occur, and thus we cannot apply the partial k& operation with respect to these loop momenta.
The generalized D operation, which now includes those loop momenta external to the particular
loop under consideration, will lower the degree of divergence of loop momenta to which we could
apply the partial k operation, the degree of divergence in the other loop momenta stays the
same. Picking different parts of the integrand, we can decrease all divergences to logarithmic
ones.

As an example we will consider a diagram with two loops, momenta k and k', that occur
in the same integrand (nested or overlapping):

I = LK) (k + k)3, (4.25)

with dimensions I', 'y and I'3 respectively. On can, for instance, consider the two-loop diagram
in fig. 3.11; lines 1 and 2 form Iy, the propagator of line 3 is I and the lines 4 and 5 form
Is. If Ty + T2+ d > 0, and therefore the k integration divergent, we apply the operation
(Ty+Ty+d)! "t : (D4 V/)i+T24d . which acts distributively on I; and I, to the integrand
I115. This lowers the divergence in k. We can subsequently apply the operation (T'y + I's +
d)!=! (D + V)Fetlstd - to [h13 and I413; the two integrands obtained after the D + V'
operation. The second operation lowers the divergence in k’. We finally apply (T'y + Ty +T'5+
2d)!=1 : DIiAT24T342d . 46 the complete integrand I I, I3 if there are overall divergences. The
reduction is done in more detail (and in another context) by 't Hooft and Veltman ('t Hooft &
Veltman, 1972). The major difference with their treatment is the absence of regulators in our
case. The prescription is only complete if it is supplemented with a regularization of logarithmic
divergences, which we will carry out in a different section (sect. 4.7), since it is a sideline with
respect to the dimensional analysis on which this lowering of divergences is based.
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4.6 Dimensional regularization

To legalize in a mathematical sense the neglect of the surface term in the partial k£ operation
we could include in the integrand a Gaussian weight:

I —>T=e"] (4.26)

This will suppress the surface terms, and all the additional terms acquired by differentiating the
weight will vanish afterwards in the limit 4 — 0 and the usual results egs. (4.11), (4.12) and
(4.13) obtain. This is rather formal. We are looking for a way to relate divergent integrals to
finite integrals times " poles in dimension space”, a method similar to dimensional regularization.
In dimensional regularization the integral can only become finite if the number of dimensions
decreases. However, using less than four dimensions will interfere with the four dimensions of
the external momenta. The partial k& operation extends the domain on which the integral is
defined and therefore it is central to dimensional regularization. We can mimic the non-integer
dimension of dimensional regularization by adding a weight to the loop integral:

I—T=(K)%1. (4.27)

If the divergence of the original integrand were §, then the divergence of the integral I is 6 +e.
We find that the divergent integral equals a finite integral, which is an analytic function of ¢,
times e~ '. This integral goes to infinity for I — I:

. 1 1 .
I= —.D T
(0+e)(0+e—1)---(e+1)e

This is similar to the case of dimensional regularization. To obtain the finite part we must find
the term of order ¢ in the finite integral : D°*! : I which is:

, (4.28)

1
;I E*: DT, (4.29)
since the only ¢ dependence® was in the weight and
(k)5 ~ 14 %ln k2 + O(e2). (4.30)

The integral over k is generally not invariant under a change of the loop momentum, as the
position of the origin of the cut of (k?)2 plays a role. Integrals of the type eq. (4.29) are hard
to evaluate.

The procedure described here has a resemblance to dimensional regularization, since di-
mensional regularization is largely based on one integral (Gradshteyn & Ryzhik, 1980):

/°° L E 1T(3(n+1)0(m = 3(n+1))
0 (k2 +a)m™ 2 [(m)am—z(n+D)

(4.31)

In order to use this formula, one introduces Feynman parametrization and the unique shift of
the loop momentum such that the dot-product terms in the denominator vanish (Muta, 1987).

4The ¢ dependence in the factorials can be put in a finite renormalization similar to MS — MS. The
same is true for any angular integral.
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This choice of the origin of the loop momenta turns out to be a good one: For k& = 0 the
denominator has it lowest value; if a threshold occurs, then the lower integration limit is always
below this threshold. As a consequence, the physical content (imaginary part) of a diagram
remains unchanged under dimensional regularization.

For our purposes (finite integrands without regulators), choosing a unique value for the
integration variable is not a good way to proceed. Apart from difficulties with integrals one
runs into a complicated discussion about the choice of integration variables and flow of the
external momenta through the diagram (Wu, 1962). In our approach, every divergence is in an
algebraic way related to a logarithmic divergence. In this respect it is equivalent to dimensional
regularization. The regularization of the logarithmically divergent integrals should be made
independent of the choice of integration variables. In sect. (4.7) we derive such a method.

4.6.1 Partial k

Many physicists, dealing with renormalization, must have dreamt, at one time or another, that
infinity is just one point, that could be cut from the space they work in. Then the edges should
be glued together. This procedure should make the theory finite and the compact version of
the space should have the same symmetries as infinite space. Howerver, sheer topological
complexity turns this dream into a nightmare.

Partial k preserves a bit of this idea. The surface term of the partial integration eq. (4.7)
is at infinity and has the same order of divergence § as the original integrand:

1
/dde =5 /ddeI+/ A1 (k|1 (4.32)
|k|=00

The first term on the r.h.s. has a lower divergence than the other terms. The leading order
behavior is a function of the loop momentum k& only, therefore one might suspect that the
neglect of the surface term is precisely the omission of the meaningless divergent behavior at
infinity. The surface term is a pure number since it belongs to the Ker of the D-operation. This
motivates the use of the partial k£ operation. It remains unclear whether the shift in integration
variables always leaves the finite part invariant®. By means of justification, we can refer to the
results of dimensional regularization and some simple examples.

There is a stronger, but up-side-down, argument why this method should produce the
correct answer: Assume a regularization that removes the divergent ultraviolet contributions
and preserves the algebraic properties of the diagram. Then the two core formulae eq. (4.7)
and eq. (4.8) are valid and our procedure is completely legitimate.

4.7 Regularization of logarithmic divergences

Although a number of schemes are available for regularization of logarithmic divergences, we will
derive a different scheme which is closely related to the dimensional analysis introduced above.
Logarithmic divergences constitute only a minor problem, different regularizations should differ

5The same is true for BPHZ.
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only by a finite constant. Our starting point is the homogeneous equation (4.13):

9 9 >
... Dy K i D Ie=0
(4.33)
We can rewrite it as a differential operator [--] acting on the integrand, Ip = {---}, of a

logarithmically divergent integral, leading to the relation:

ij 8 u Iy = ija (4.34)

The J-divergent integral is differentiated § times with respect to the external variables which
yields Iy. The logarithmically divergent integrand Iy contains ¢ loose indices which afterwards
are contracted with the external variables to obtain the amplitude. We can relate the integrand
to a convergent line integral:

/ dkIy(k, p) / dpl' ,u / ddem] 5 k,p') + constant | ,  (4.35)

the integral on the l.h.s. is logarithmically divergent, but the integral on the r.h.s. is finite,
and the lower integration limit R of the line integral determines the renormalization point (the
freedom of finite renormalization). After the integration over k the constant must be fixed
such that the amplitude disappears for p;“ — 0. Since the inverse of a differential operator

is not uniquely determined the line integral will introduce a spurious pole at p;“ =0 if we do
not subtract this part. This might be considered the fixing of the finite renormalization, which
then is reintroduced by the line integral.

For the line integral we can choose a straight line from the renormalization point to the
specific momenta we are considering. If we use the origin as renormalization point we can
integrate over the fraction A of the total momentum: p;. = )\pﬁ‘ and the line integral is

"=p dp"‘ dX
Z/,u . I(p )—/0 ~ L Owi). (4.36)

’L

Another renormalization point is given by a different lower limit in the line integral; if we choose
2= 2,

For this regularization we have separated the D operation in differentiations with respect
to mass and with respect to momenta. One could imagine that a different separation would
be more appropriate. For example, in the case of massless theories one could differentiate with
respect to one external momentum variable and integrate with respect to another. Again we
state that the different schemes can only differ by a constant as the result of the logarithmic
divergence. The value of this constant is fixed by the choice of the lower integration limit.
In section 4.11.3 we show that this regularization gives the same finite momentum dependent
part as dimensional regularization.
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Figure 4.1: ¢ self-energy loop.

4.7.1 An example: ¢ self-energy

As an example of the reduction of a logarithmic divergence we will deal with the ¢ one-loop
self-energy diagram (see fig. 4.1), written in Feynman parameters (which are not essential but
simplify the calculation):

2 gl
g . 1
= d d*k . 4.37
F 3274 /o :1:/ (k2 + 2(1 — 2)p? — m?2)? (437)

Differentiating with respect to the mass renders the integral finite. Note that the shift in
integration variable does not interfere with the differentiation. Since the integral is finite we
can perform a Wick-rotation, which accounts for an additional factor :

0 ig?Qy [! m?
—F == 4.38
mam]: 3274 /o de (z(1 —2)p?2 — m?2)’ (4.38)

Q4 = 272 is the surface area of the four-dimensional unit sphere. After we have subtracted
from the integrand its value at p = 0, we can perform the line integral. The correct imaginary
part follows from the small negative imaginary part of the mass. The line integral should also
respect this pole structure, therefore Im p? > 0 for p? > 0. Thus we find with the help of eq.
(4.33):

;02 1 H / — ;02 1 2 2
F=- / d:c/p apr— Perl=o) g / (P it
1672 J, 0 (z(1 — x)p? —m?2) 3272 J, m?
(4.39)

which leads to the correct amplitude eq. (4.14), see also sect. 4.11.2. The finite renormalization
is fixed here such that the amplitude F vanishes® for p? = 0.

4.8 Gauge theories

In gauge theories some of the gauge symmetry is preserved at the quantum level. The Ward-
Takahashi identities, and their generalizations for non-abelian theories, the Slavnov-Taylor

6This has nothing to do with the p’ = 0 subtraction earlier, which removed the spurious pole.
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identities, reflect current conservation on the level of Feynman amplitudes. If the proper
choice of loop variables is made, the Ward-Takahashi identities are exact relations among
integrands of self-energy diagrams and vertex functions of the same order. A gauge-invariant
regularization should preserve these relations.

In order to show that our regularization scheme satisfies the Ward-Takahashi identities we
need to prove a number of features of our scheme. First, the answer should not depend on
the choice of integration variables. Second, all the operations we perform must be linear. If
all operations are linear, they will preserve the algebraic relations. Third, we can choose the
renormalization points of the different diagrams such that they are consistent with the Ward-
Takahashi identities. If we have proven the first one, the second and third features will be
technical details. However, these details clarify our approach to regularization.

If we change the integration variables, the integrals will change only by surface terms at
infinity of finite integrals, which are automatically zero. Take an arbitrary integrand I(p, k).
Redefining the loop momentum k means that we shift it by a finite amount proportional to the
external momenta: I'(p, k) = I(p, k + ap), where « is some real number. I’ is algebraically
a different expression, but I and I’ differ only a total divergence since the differentiation with
respect to the second argument equals a differentiation by the loop momentum:

0 9]
DI(-,k+ ap) = p“a—wl(-, k+ap) = ap“%l(-, k+ ap). (4.40)
If we integrate over the component of k in the direction of p, this term will only give surface
contributions.
A surface contribution is not necessarily zero, since the integrals are divergent. However,
if we make the integrals finite through the D operation we generate surface terms which are
zero since they belong to finite integrals:

0
1. .. n—1 n I 1. n—1 1.n —_
/dk dk" " dk EID (k- K" k™)

/dkl---dk"*1 (I(k', - k"N L) —I(K', -+ k"', —L)). (4.41)

In the case that the original integral is logarithmically divergent, I ~ (k™)~", the integral eq.
(4.41) vanishes. The only surviving part is the part which is only differentiated with respect
to the first coordinate. Any additional contributions due to the shift in integration variable
vanishes. Because of the close connection with dimensional regularization we already expected
this result.

Rather than insisting on a particular renormalization scheme, we want to argue that one
can consistently choose the renormalization points, i.e., the value for which the amplitude
vanishes. We have seen that the algebraic part of reducing the degree of divergence to a
logarithmic one is straightforward. The treatment of the logarithmic divergence remains an
issue. In practice this means that we are free to choose an additive constant for each amplitude
we calculate. This is the finite renormalization. To insure gauge invariance different constants
must be chosen consistently. Consider, for example, the electron self-energy and the vertex
function. The Ward-Takahashi identity:

X(p) = X(p+q) = A (p,p+ q) (4.42)
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is the result of a similar relation among the integrands (the bold-face quantities):
S(p. k) = Blp+q.k) = A (p,p + 4, k). (4.43)

The one-loop self-energy correction, X, is linearly divergent, hence the vertex correction is
logarithmically divergent. A straightforward calculation gives

Dq, A" = q,(D — 1)A". (4.44)
With a renormalization scale, p, for the electron self-energy:
Y(p?) =0, (4.45)
the condition for the vertex correction follows from eq. (4.42):
q N (4%, 1) = 0, (4.46)

which freezes the freedom we had for the renormalization of the vertex function.

Since our regularization scheme uses a line integral from a particular point in p, ¢ space we fix
uniquely the point where the amplitude vanishes. Lorentz invariance ensures that the amplitude
vanishes for all values that are related to this point by transformation of the coordinate frame.

4.9 An application: nucleon self-energy

Most models for nucleon-meson dynamics start with a nucleon as an elementary field (Bethe
& de Hoffmann, 1955). This reduces the phenomenological input of the model to the choice
of an interaction Lagrangian. The predictive power of such a model is determined by the
proper choice of elementary processes (diagrams). The natural treatment of the nucleon spin
is one of the advantages of this approach. The price paid for this parameter-free approach
are infinities due to the local interactions of the elementary fields. This problem is twofold;
under renormalization we acquire higher order meson-meson interactions (Weinberg, 1967),
and one needs to remove the infinities. At this point some authors (Lepage & Brodsky,
1980; Thies, 1985; Achtzehnter & Wilets, 1988; Jaroszewicz & Brodsky, 1991) argue that
because the nucleons and mesons are composite particles, phenomenological form factors need
to be introduced. These form factors render the integrals occurring in the Feynman diagrams
convergent. Apparently, two steps are combined in this way: the theory is made finite and
corrections owing to the composite nature of the particles are introduced. The question remains
what are the true corrections due to the compositeness; how well is the nucleon described by an
elementary nucleon surrounded by a virtual meson cloud. Another problem with the nucleon as
an elementary field is the possibility to create nucleon—anti-nucleon intermediate states from
a meson. If we think of the nucleon as a bound state of three quarks we realize that it is
hard to create three quark—anti-quark pairs from a single meson, so such processes should be
suppressed. It is difficult to determine beforehand which processes will be dominant, but one
suspects low energy states to contribute the most. However, one knows that the high-energy
states give an infinite (local) contribution.

Our method of regularization enables us to pursue the idea of the nucleon as an elemen-
tary field and separate the nucleon states (forward diagrams) from the two-nucleon—one-anti-
nucleon states (pair diagrams) and see how much each contribute to the amplitude after the
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(a) (b)
Figure 4.2: (a) The forward diagram; (b) the backward, or Z, diagram.

amplitude is made finite through local subtractions. It turns out that the forward process
is dominant but the pair-creation process is not negligible. Details depend on the type of
interaction.

For low energies, as in nucleon bound states, we suspect the main contribution from tem-
porary presence of a pion. The effective size of the nucleon is determined by the mass of the
pion. The pion couples to the nucleon by pseudoscalar coupling:

Lint = igpy 1. (4.47)

In the center-of-momentum frame of the incoming nucleon the correction has the form:

o LI k) (x* (k)|
327T3 Z / kENE p —EN E) (448)

IE(p?)p. L =

with Exy = \/k2 + m2 and E; = \/k2 +m2. For the local theory eq. (4.47) T = 4°, but if
one introduces dimensional constants to include in " a nonlocal form factor we can still treat
this integral with our method. We use a slightly different definition than the standard definition
of 3 because we excluded the vertices from the definition of the self-energy.

The integral eq. (4.48) is linearly divergent and non-covariant since we only include the
particle state |[N7) and not the two-particle one anti-particle state [NNN7) (see fig 4.2).
Therefore it might be possible that apart from the divergent local subtractions we subtract
non-local terms that cancel in a covariant calculation against similar terms with the opposite
sign from the |NNJ\77T>—sector. However, these terms are local in time as the result of causality,
and therefore already incorporated in the arbitrariness of the definition of the causal propagator
(Bogoliubov & Shirkov, 1959). "Backward” and "forward” refer to the space-time formulation
of field theory, these two processes are space-time separated and can only overlap for t = 0.
The subtraction is covariant.

We can separate the finite perturbative expansion into three different parts: Zeroth, first
and second order terms in an expansion in terms of (p° — Exy — E,), with weight functions
which make all diagrams finite (see eq. (4.50)). The weight functions are due to the local
subtractions only, but contain some of the typical scales of the problem.

The subtractions are made on-shell, such that the mass of the nucleon is not altered by the
perturbative correction.
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Figure 4.3: The different contributions to the nucleon self-energy. The vertical scale is in g*/(87?).

The spin-projection of the nucleon is independent of the spinor-basis’:

> I (k)| =7°Ex + F+m, (4.49)

a=1,2

k is odd and will remain so under regularization, therefore the term Ecan be dropped. We use
the regularization described in Sect. 4.7. Then we obtain an integral with a finite integrand,
given by:

2
/ Z J’YOEN + Bym) n Co° + Dy
E p 7EN E ) ENE‘n'

b <p0 ) finite —

3.3 In[p’ — Ex — E,]
7=0
(4.50)
The weight functions 4, B,C and D are smooth functions of k? and linear functions of p'.
One cannot combine the p° dependence in numerator and denominator to a Laurent expansion
. 0 _ _ . . . . .
in (p° — Enx — Ex) without introducing divergences in the separate terms. We calculated
numerically the forward diagram eq. (4.48) and the Z-graph with the |[NNNw)-state and
found that they add up to the covariant answer.

The total truncated amplitude X has four parts that were separately calculated:

S(0)eor = V2@V R + SN NE + 08 (00) 8% nn + ) N R ns (4.51)

7Again the slashed momentum is part of a Lorentz invariant: ;Z: — (v e 4+ 42k 4+ 43K3).
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which are plotted in fig. 2. The meson mass is set to 0.147 my. The signs of the corrections
to the off-shell nucleon mass due to pseudoscalar coupling to the pion (I' = +°) follow from

these results through:

PP ==, 7’y =1 (4.52)

4.10 Conclusions

We have defined a method of regularizing diagrams without regulators, and without reference
to the general proof of renormalization. The formulae obtained as intermediate results are the
same as those of dimensional regularization although they are derived in a different context. In
this way we avoided the discussion and treatment of regulators which complicates the procedure
of renormalization and moves the attention away from the physical part of the theory to the
meaningless, divergent expressions.

We have not proven renormalizability of some specific theories, but from our method one
can infer by simple power counting which counterterms are subtracted for the diagrams that
occur. The counterterms belong to the Ker of the differential operator D, that is central
to our method. The differential operator needed to relate a general divergent diagram to a
logarithmically divergent diagram follows from power counting. The remaining logarithmic
divergences are treated in a way resembling dispersion methods, but we realize that at this
stage many different methods of regularizations can be applied without difficulties.

Although different renormalization schemes are related to each other in a formal way, it
is generally not possible to relate them rigorously. We borrowed some of the elements of
dimensional regularization, and have the same results at intermediate stages in the calculation.
However, for our specific needs we altered some of the methods. The method described in this
chapter shares some of the merits with dimensional regularization. It also allows us to apply
it in other cases, like light-front Hamiltonian field theory. Our focus is largely on the latter
matter, but we feel that the discussion in this chapter has it own merits and should not become
blurred by a technical discussion of light-front field theory.

4.11 Covariant calculations

4.11.1 Generalized dimensional operator

It is possible to derive the general behavior of a Greens function G independent of the order
in the coupling constant, with a striking simplicity:

(pga% + D) G(oy,op) = (4 —30p — g(’f) G(og,0p). (4.53)

The Greens function G has o ¢ external fermion lines and o, external boson lines. The constant
f

p is given by the number of lines that couple to the elementary, bare, vertex with coupling

constant g:

3
p= E#fermion lines + #boson lines — 4 (4.54)

Proof
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The derivation consists of some straightforward algebra in the spirit of Lee (Lee, 1976) in
combination with eq. (4.8). The ingredients are the formulae below:

1 1
#lines = §(Xf + xp)#vertices + E(of + op), (4.55)
#loops = #lines — (of + 03) + 1 — F#vertices, (4.56)
1 1
(D — 44loops)I = — <§(af + 20p) + E(Xf + QXb)#vertices> I, (4.57)

I is the integrand defining I', xs and x; are the number of fermion and boson lines resp.
attached to a vertex. The relation that holds for the integrand also holds for the integral since
it contains only external variables.

4.11.2 ¢? self-energy

We will calculate the finite part of the ¢* one-loop self-energy diagram (fig. 4.1). In the case
of dimensional regularization we need to multiply the integral with a constant p that has the
dimension of a mass, to maintain the correct dimension of the integral.

— ﬂ 4—e 1

F - 2(27{')4_5 /d k [(p _ k')2 _ mg][ka _ mQ] (4.58)
= ﬂ ! T 4—e 1
o 2(2m)te /0 d /d k(/@ Tl —a)p? —m2)2 (4.59)

We perform a Wick-rotation of the loop momentum, which gives an additional factor i, and
integrate over the loop momenta. With the use of eq. (4.31) we can calculate the integral over
k. Then we obtain:

In the neighborhood of € = 0, the integral has a pole, the pole of the second gamma function,
as well as some finite pieces (behaving as €”). However, the finite pieces lead to a finite integral,
that is constant so we do not worry about them. These parts can be absorbed in the arbitrary
constant p. Also the angular integral will give some finite pieces; without calculating them
we add all these parts as finite renormalizations to the pole part, 2¢ !, of the second gamma
function. We seek the part of order € in the remainder of the integrand that cancels the pole
in the gamma function and gives us the p-dependent finite part:

m? —x(1 — x)p? 3 € m? — x(1 — x)p? 5
(u—Q) ~1-5h (T) +0(e?), (4.61)
which gives the correct finite part eq. (4.14)
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;2 2 2 2 2
ig 1 m [p? —4m [ p
F = 1671-2 (1 — 5 In (?) — Tarctanh m > . (462)

The finite renormalization is given by the arbitrary constant u. In the kinematical region given

by:
| p2
P > 1, (4.63)

the arctanh has an imaginary part since we are not on the principal branch of the arctanh.
Taking into account this imaginary part gives indeed the proper breakup amplitude.

4.11.3 Comparison between finite results

In this section we will show that our regularization scheme for logarithmic divergences leads
to the same finite parts as the dimensional regularization does. An arbitrary logarithmically
divergent integral can be written, after Feynman parametrization, as:

o] k2n
I= [ d¥* : 4.64
/0 (k‘z + Oéijpgpju + ajm?)”“‘l ( )

where ay;; and oy are functions of the Feynman parameters only. Repeated indices are summed
over. Differentiating with respect to the masses, as described in section 4.7, and subsequently
integrating over k? vyields:

0 —2a,;m?
mj T = ——f (4.65)
om; QijP; Pjp + aymy
We subtract the value at p; = 0 for all x and j:
0 0 o QOéijpgij

m;—2Z(p) —m;—ZIZ(p=0)= . 4.66
G 20 = i T =0) = B (4.66)
The line integral, eq. (4.36), along a straight line from the origin in 4N dimensional space to
the point (p%,---,p3,---,p%, -+, p%) is a one dimensional integral over the scalar parameter
A (A €10,1]). This yields:

1

N R
QP PjpA® + aymsj

1
Ir:/ d(aijpfpm)\z) (467)
Ar

If the amplitude should vanish for a particular value of a;;p!'p;, (e.g., a;jpt'pj, = u?), we can
choose A, accordingly:

Qi ipi i+ aym?
I,—lnl e e M (4.68)

p? 4 am3
Dimensional regularization would yield exactly the same finite momentum dependent part. One
sees that ) p//0,u I, yields eq. (4.66).
J
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Renormalization of light-front Hamiltonian
field theory

T he renormalization of light-front Hamiltonian field theory is more or less an open question.

For some cases it has been shown that the same finite results can be obtained as in
covariant field theory. Often a special reference frame is chosen, and the counterterms have
non-covariant forms. At least a much more difficult technique is needed to obtain these results.
The additional singularities that occur in light-front perturbation theory are to blame for most
of the confusion.

Covariant field theory has difficulties of a similar nature. Covariance is often preimposed
to derive the finite parts and the counterterms associated with a Feynman diagram. We have
seen in the chapter on dimensional regularization that parts of the divergent diagrams are
subtracted without associating counterterms to them; counterterms correspond only to the
remaining logarithmic divergence.

In light-front perturbation theory these higher order divergences are not so easily discarded.
They are intertwined with the different structures that occur in a time-ordered diagram. In the
case of a manifestly covariant Lagrangian we know that the sum of all time-ordered diagrams
should add up to a covariant result. In this chapter we show that we can separate the different
structures and recover the covariant finite part and the proper counterterms. We do not need an
elaborate machinery to obtain these results. The proper regularization automatically separates
the different terms. The use of non-covariant gauges requires some additional investigations.

With the dimensional analysis designed in the previous chapter we show that the divergences
and singularities we encounter all belong to either of the two classes; they are the proper
covariant divergences or they are of a higher order and cannot be associated with a proper
Lorentz structure.

5.1 Introduction
Due to the apparent breaking of manifest covariance in light-cone time-ordered perturbation

theory people tend to treat the singularities and divergences in the longitudinal direction sep-
arately from the divergences in the perpendicular direction (Perry & Wilson, 1993; Glazek &

81
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Wilson, 1993; Wilson et al., 1994; Perry, 1994b). This separation makes it hard to recover
the covariant result in lowest order perturbation theory (Mustaki et al., 1991; Brodsky et al.,
1973). Especially the longitudinal singularities are hard to interpret and lead to the belief that
(confining) potentials occur owing to renormalization of light-front field theory (Perry, 1994a).

Our approach is closest related to the work of Brodsky, Roskies and Suaya (BRS) (Brodsky
et al., 1973), who apply a subtraction method, the alternating denominators, to a large number
of diagrams in QED, establishing the anomalous magnetic moment of the electron up to the
fifth order in the infinite momentum frame. However, we have a different aim. First of all we
work strictly with light-front momenta, we do not take the infinite momentum limit. BRS need
part of the backward diagrams for fermions, which violate the spectrum condition, to cancel the
longitudinal singularities. This stands in close relation with the use of the infinite momentum
frame limit which regulates part of the divergences. So it is clear that BRS regulate the
diagrams first and take the infinite momentum frame limit afterwards. Therefore it is difficult
to identify, in their final results, the contribution of divergent diagrams. This stands in contrast
with our approach in which the l.c.t-ordered diagrams, obeying the spectrum condition, are
identified first and regularized afterwards, if necessary. Secondly, they find a different power
counting, than we do, due to the fact that they consider only on-shell diagrams.! Furthermore
they do not treat diagrams with multiple vector particles such as the fermion-loop vacuum
polarization. Vacuum polarization is the real test-case for regularization and renormalization.
Although transversality of the vacuum polarization, (II**(p) = (p2g"* — p*p*)I1(p?)), should
follow from the Ward-Takahashi identity, it is often used in calculations without further ado, also
by BRS and in many of the covariant calculations. Thirdly, the locality of the counterterms is
another issue which requires some attention. Since the time-ordered formalism is not manifestly
covariant it is also not manifestly local. In our scheme the counterterms are local in time, and
due to the formal covariance of the divergent amplitudes (see chap. 3) and the covariance of
the finite amplitudes we deduce that the counterterms are also fully local. To show that the
finite amplitudes are covariant we calculate the amplitudes with arbitrary off-shell momenta,
and we show that they only depend on Lorentz invariant objects.

We introduce a regularization scheme which maintains the symmetries of the theory such
that the total amplitude is covariant order by order. We remove in our scheme the lowest orders
in a Taylor expansion of the amplitude, which can be reabsorbed in counterterms to the original
Lagrangian. The regularization also removes the longitudinal singularities without extra effort.
This strengthens our belief that the instantaneous terms in low order diagrams are artifacts
of the light-front formulation of perturbation theory and hence meaningless. They might be
considered to be local structures since they occur at finite order in the Taylor expansion, but
they do not have the proper dimension to act as such.

The regularization scheme of subtracting low order terms in the Taylor expansion (Hepp,
1966; Hahn & Zimmermann, 1968; Zimmermann, 1968; Zimmermann, 1969; Caswell &
Kennedy, 1982) might sound old-fashioned, but it has advantages over most other regular-
ization schemes. First, it preserves covariance, and secondly, it is fully local. Thirdly, it is
a linear operation and can be applied to separate parts independently, and fourth, it gives
finite integrands and allows for numerical implementation. Some of the problems that occur
in manifestly covariant field theory, by means of Feynman diagrams, are not present in light-
cone time-ordered perturbation theory with this regularization, since the external energy flow

10n-shell diagrams can only be used for the scattering of free particles. If particles are localized,
off-shell in a bound state it requires knowledge of the off-shell scattering amplitudes.
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through the diagram is fixed from the start. The freedom to choose the flow of external mo-
menta is the origin of most problems in the regularization of Feynman diagrams. The problem
of the regularization procedure we propose is the separation of different orders of divergence
that occur in amplitudes with a nontrivial tensor-structure. The separation in each energy-
denominator of internal and external coordinates, which is one of the advantages of light-front
dynamics, turns out to solve this problem easily.

The dimensional analysis of each term in the light-cone time-ordered perturbative expansion
tells us that they separately have the proper dimensions and that the same subtractions must
be made as in the covariant case apart from the subtractions that, due to their tensorial
structure, correspond to " negative powers” in the Taylor expansion. These terms are low order
remnants of the instantaneous interactions, which are the implementation of constraints in
Hamiltonian perturbation theory. We consider these negative terms to be meaningless, and
they automatically vanish if the proper divergences are subtracted from the diagram.

5.2  Dimensional analysis

In this section we restate some of the results already obtained in chapter 4, and apply the
methods developed there to specific examples in light-cone time-ordered perturbation theory.
The starting point for dimensional analysis is the construction of an operator that has the
"building blocks" of the perturbative expansion as its eigenfunctions with the " dimensions” of
those building blocks as eigenvalues. For light-front field theory this dimensional operator is:

V + D; (5.1)

V contains the internal variables k; and D the external variables Dy

— 0
vV = k-9 ki - —— 5.2
2K W i (5.2)

D

Zmz —|—ij3 #. (5.3)

The dimensional operator acting on a light-cone time-ordered diagram which contains [ energy
denominators, s fermion propagators and n — s boson propagators, returns the dimension of
the diagram (schematically):

(v_’_D) (41 +ma) - (ds +ms)

:(s_l_n) (gl—"_ml).-.(gs—i_mS)
af atlpr — -l — Hi af ol — il — Hi
(5.4)
The momenta ¢; are combinations of the internal (k) and the external momenta (p). The s
spinor projections (¢; +m;) have an on-shell minus component: ¢; = (¢, +m?)/(2g;"). The
l energy denominators contain the difference between the total incoming p~-momentum and
the sum of all the on-shell energies of the particles present in an intermediate state j, which
are given by:

Hi =% G+ My (5.5)

rej 2qT
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If we include all the appropriate external lines in the intermediate states the energy flow through
each state is the same and p;” = p; . With the help of partial integration ('t Hooft & Veltman,
1972), and chapter 4, we can relate integrands with higher order divergences to integrands
with lower order divergences, which forms the basis of dimensional regularization.

There are two major differences between the covariant approach and "old-fashioned” per-
turbation theory (Weinberg, 1966). First, in light-cone time-ordered diagrams the longitudinal
integration extends over a finite domain only, therefore partial integration will lead to addi-
tional surface terms which renders a naive application of partial integration useless. Secondly,
light-cone time-ordered diagrams contain singularities which can not be associated with objects
with the proper dimension as obtained in naive power counting.

Although partial integration leads to surface terms, each time-ordered diagram that cor-
responds to a single Feynman diagram, appears to have the same dimension as the covariant
amplitude. The same equation that provides us with the dimension of the full covariant am-
plitude, also gives the dimension of the time-ordered diagrams (see chap. 4):

DF(p) = 6F(p). (5.6)

F is an amplitude or a part of a amplitude. The surface terms from the partial integration are
cancelled by the surface terms obtained by commuting the D-operation with the integral:

p+ — p+ — -
/ ’ dktd?k, DI(kt, k) ) = D/ S AkTd%k, T — /d%l(prjf(p;,m) —pFI(pf, kL))
+
Py

Py
(5.7)
In many cases the surface terms are infinite so this is a formal relation. The surface terms spoil
many of the algebraic relations that exist in the standard cases (chap. 4). Therefore we have
invented a method which does not generate these surface terms and removes the end-point
singularities.

5.2.1 Transverse dimensional analysis

Often, power counting in the longitudinal and in the perpendicular directions are separated.
Although we wish to deal in our regularization scheme with all directions in the same way, the
separation of dimensions gives some insight in the spin dependence of the degree of divergence.
We apply the ideas of ordinary dimensional analysis to a general time-ordered diagram, eq. (5.4).
To do so, we introduce two dummy variables £ and 7, which are set to unity afterwards, and
are used to determine the dimension of the spin structure:

vt = 6T, (5.8)

o= gy (5.9)
Also the transverse parts of gauge propagators must be multiplied with the same appropriate

factors depending on the number of free — and + (upper)-indices. We can define a transverse
dimensional operator:

Vr + Dr, (5.10)
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as follows:

= - 0
Vr = Zku T (5.11)

D~

0 0 . 0 0 0
Ei:mlami—i—QEj:p] apj_+zj:pﬂ o 5ag+”an' (5.12)
The external longitudinal momentum, p™, is absent because the internal longitudinal momen-
tum is absent in the transverse dimension of an integrand. An arbitrary time-ordered diagram
will contain different eigenfunctions of the transverse dimensional operator. Note that the di-
mension in the minus direction is twice the dimension in the perpendicular direction. Applying
this operator to the time-ordered diagram above, eq. (5.4), gives us the following transverse
dimension:
r=s—-2l—nt+n", (5.13)
where nt(n™) is the number of free +(—) indices. s and [ are defined below eq. 5.4. This
relation allows us to use dimensional regularization ('t Hooft & Veltman, 1972), (Mustaki
et al., 1991) for the perpendicular dimensions, since we can use partial integration and obtain
the integrand identity:
Dyl = (T'r+2L)I1. (5.14)

Here, L is the number of loops. However, if there are longitudinal singularities present in the
integrand, these would interfere with the perpendicular dimensional regularization. Equation
(5.14) has a straightforward relation with the covariant dimension, eq. (5.6): (I'r + 2L) =
§+n~ —nt. It is easy to check that if only covariant objects p, p?, p*p”, etc. occur in the
amplitude the two relations are equivalent.

The transverse dimension is our guideline for subtraction. Our regularization scheme is
covariant, so if we subtract terms which remove the transverse divergence they automatically
remove the associated longitudinal singularity. The longitudinal singularities are more compli-
cated as guideline since they are more difficult to interpret, and a diagram can have a transverse
logarithmic divergence without longitudinal singularities.

From eq. (5.13) we see that we need to separate different divergences if we treat an
amplitude with nontrivial tensor structure. We will demonstrate this separation in several
examples.

5.2.2 Longitudinal dimensional analysis

Using the ordinary dimensional analysis and the transverse dimensional analysis we can derive
the appropriate longitudinal operator. Since D = Dy, + Dr it follows that the longitudinal
operator: o

VL + Dy, (5.15)

has the following definitions:
= 0
VL = Zk+ 2 (5.16)
0 0 0 0
Dy = — P T 4= —p—. 5.17

J



86 5. Renormalization of light-front Hamiltonian field theory

The dimension it returns compensates for the inclusion of spin and the exclusion of the longi-
tudinal direction in the transverse dimensional analysis.

(Vi + Dp)I(p, k) = (I —n+nt —n")I(p,k). (5.18)

Note that the number n — [ = L, the number of loops in the diagram.

5.3 Minus regularization

After the discussion of dimensional properties of light-cone time-ordered diagrams we propose a
straightforward regularization for them, which we call " minus regularization”. We differentiate
the diagram with respect to the external light-front energy p~ until the integral exists, and we
can integrate over the internal variables k™, la_. Afterwards we integrate the integral again over
the external light-front energy as often as we have differentiated the integrand (symbolically):

+

/Op dk* /ko‘LI(p, k)= (/:i dp")rl/op+ dk+/d21@ (%)nl(k,p) = F(p)—P(p).

2pt+

(5.19)
P(p) is a polynomial in p~, which equals the n-th order Taylor-expansion of the amplitude
F. The lower limit of the integration is the renormalization point, for which we have chosen
p? = 0. One should take care that the renormalization point is below any production thresholds,
otherwise the subtracted part P(p) is not real and unitarity is violated. This procedure removes
from the amplitude the lowest order terms in the Taylor expansion of the amplitude around the
renormalization point:

ri P\ i \"
Fp) = ao+a1(p —217>+a2(p _2pﬁ> +"'+O<(p _2pﬁ>>
2
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=
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Since we differentiate only with respect to the external energy, p—, the masses act as internal
variables. This has some consequences for the ease in which gauge invariance is ensured, and
is the largest difference between our scheme and dimensional regularization. Thus the first
n — 1 derivatives of the amplitude, with respect to p~, vanish if they are subjected to our
regularization, eq. (5.19). Different time-ordered diagrams can be subjected to this procedure
separately and added together afterwards since the differentiations and integrations are linear
operations and can be applied to each terms separately, if the renormalization point is chosen
the same for the separate pieces. One should only take care that the instantaneous diagrams are
added to the diagrams with ordinary singularities, in order to avoid unnecessary differentiations.
In chapter 3 we have seen that longitudinal singularities are the result of contributions of the
semicircle in the contour integration. If one performs the contour integration with caution there
are no singularities. Here we will see that the singularities are terms in the Taylor expansion
that do not correspond to a Lorentz structure. They vanish under renormalization where the
power counting correspond to the counting of powers in p~.
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In the case of scalar amplitudes there are no extra powers in p~ apart from the covariant
divergence, and the subtraction similar to the covariant subtraction is the full story. The
number of differentiations needed equals the order of divergence of the amplitude. In the case
of spinors or vector-bosons the amplitude has an internal structure and mixes different orders in
p~, thus different numbers of differentiations are needed to remove the divergence of different
parts of the integrand. If we consider the truncated electron self-energy we know the general
structure from covariance (de Wit & Smith, 1986):

S(p) = pf(p*) + my(p°), (5.21)

but we see that this structure mixes different orders in p~:

7£ 2 £ (p? @ -t 2 2 2 2
E(p)—2p+p %)+ ot TP AL f(0%) +mg(p”). (5.22)

Renormalization in this case means: f(p?) — f(p*) — f(0) and g(p?) — g(p*) — g(0). Part of
the integrand should be differentiated twice, and the rest of the integrand should be differenti-
ated only once to remove the divergence. For the amplitude this separation is straightforward,
but for the integrand it is more elaborate. In general the longitudinal momenta k* and p* are
our guide. We will show this for different examples in separate sections below.
The truncated vacuum polarization contains even more orders in p~ (de Wit & Smith,
1986):
" (p) = (g"p* — pp")I1(p?). (5.23)

In this case renormalization means II(p?) — II(p?) — I1(0). If we look at the tensor p*p” we
see three different orders in p~:

pp- ppt oppt pp? @ 0 00
ptp~ ptpt ptpt pTp? | _ Sl 0 000
p'p~ p'pT p'pt p'p? 0 000
p’p=  p’pt PPt pp? 0 000
27 pt o pt P
(2pt)2  2pt  2pt pT
+
p
Lo E 0 0 0
Ly 0 0 0
2
£ 0 0 0
pl p i p'pi PP
(2pT)>  2pt 2pT 2pT
PPl Tt ol 2
+ e PPPP PP (50
PQI)PL p1p+ plpl p1p2
Tl A T A

For the amplitude this separation is again straightforward, but in terms of integrands it is more
complicated. First we introduce internal variables as is done in front-form dynamics (Dirac,
1949; Leutwyler & Stern, 1978; Lev, 1993). These coordinates have the advantage that the
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Figure 5.1: (a) the scalar loop; (b) the fermion self-energy; (c) the vacuum polarization.

integrand changes in a trivial way under a Lorentz-transformation of the external momenta.
We can therefore separate the different structures and determine their appropriate degree of
divergence. These terms are differentiated according to their divergence. For example, in
eq. (5.24) we have three orders. To subtract "II(0)" from the vacuum polarization the first
term should be differentiated three times, the second term two times and the last one only
once.

Both in the electron self-energy and in the vacuum polarization there are instantaneous
terms in a light-front perturbative expansion, but these do not contribute to the amplitude;
they are removed by the regularization procedure. They are independent of p~ (or in some
cases linear functions of p~) and therefore drop under differentiations. The only assumption
we made to introduce our regularization procedure was covariance of the amplitude. The fact
that different diagrams together make up the complete covariant amplitude does not bother
us since differentiation and integration are linear operations.

The instantaneous parts and other longitudinal singularities are considered meaningless in this
procedure, they correspond to the "negative order” Taylor expansion. For the fermion self-
energy, for example, this term is:

+— _ p1
7 —21?) 42 Pt
7;02 /dk d kliﬂp* oy (5.25)

There are no rigorous methods to determine the integration limits in this case. The precise
form of the integrand depends on the implementation of the instantaneous terms (see chap.
3). These instantaneous terms drop automatically in our regularization procedure. We do
not associate counterterms with these parts. It is a strange artifact of light-front field theory
that these negative orders exist; It is the result of the linearity in p? of p~. These terms can
also be removed by removing the negative orders of the Taylor expansion (Bergere & Zuber,
1974) in k™ around the singularities in the time-ordered diagrams, which frees one of the
combinatorial job to combine the time-ordered singularities with the instantaneous parts as
done in the "blink” procedure (see chap. 3).
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5.3.1 Scalar loop

As a first, completely explicit, example we consider the light-front time-ordered diagram for
the scalar loop with two propagators, fig. 5.1(a):

Pt Akt a2k 1
_ 1
f(p) - A 4/€+(p+ — k+) - ki+m2 (p1—ko)24m? . (526)

kT 2T —k)

The integration limits are those of the longitudinal integration in k™; the perpendicular in-
tegration k; = (k!,k?) extends over the whole space R%Z. Throughout this chapter we do
not include the coupling constants and the additional factors (27i, symmetry factors, —1 for
fermion loops) to keep the formulae as simple as possible. After difFerentiating the integrand

once with respect to p~ we can integrate over the internal variables (k™ kl with the result:

OF awpt  4mrm?pT p
- e 5 arctanh 4m2 (5.27)

The finite part of the amplitude is obtained by integrating over p~:

P 2
Fr(p) =F@*) — F(0) = /p—ir dp'~ 88.7-"(/7 = -7+ m/ arctanh p4m2

(5.28)

2

The expressions simplify if we introduce the variables z = k™ /p*, y =2 — 3, £ = L

and d¢ = —(4m?2p* /\/p2(p? — 4m?2)3)dp~. The proper imaginary part is obtained if we take
into account that the mass has a small negative imaginary part, and we are not on the principal
branch for the arctanh for p? > 4m?.

5.3.2 Fermion self-energy

The time-ordered diagram for the truncated fermion self-energy in the Feynman gauge is given
by, fig. 5.1(b):

+

- +(pt — k+ k2 —ki)24+m?’ '
o AT k) DT = opF (pé(p]%—)kj)

The instantaneous term is included in the integrand therefore the spinor projection is defined
as:

+ kL

P—E+m=70" - o3

without the instantaneous part the final result would be the same. Note also that there is a
longitudinal singularity for k* — 0. As we have seen, the self-energy mixes different orders

L)yt =k = AL (L — kL) +m, (5.30)
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of p~. We separate the different parts of the integrand by going to internal and external
light-front variables:

kY = apt (5.31)
ki = ap+qL. (5.32)
This separates the different orders of divergence:

2

2
b Ktm=at (pQ’j;am;;)+mq1+[<1x>ﬁ+my (5.33)

The last term contains the fraction(1 — z) of external momenta flowing through the fermion

line. The fraction z is measured in terms of longitudinal momentum p*. The barred quantity
P has an energy component such that p? vanished at the renormalization point: p? = 0,
therefore: p~ = %. The first term is differentiated twice with respect to p—, the last term is
differentiated only once. The middle term can be made finite with differentiations, but being
odd, it does not contribute. All integrals are then finite, and we can integrate over the internal
variables x, 7| . Afterwards we integrate the first term twice over p~ and the last term once
and obtain the finite part of the covariant amplitude:

% (p) = E(p) - £(0) = —4mp (_i i (1 - m_4> = [MD

16 8p2  \8 8pt m2
1 1 m? m? — p?
5.3.3 Vacuum polarization

The light-cone time-ordered diagram for the vacuum polarization in QED is given by, fig.
5.1(c):
n
" (p) = / P Ak Ty (b A m)y” (P + m)
o +(pt — k+ k2 +m?2 —k,)24m?2’
0 1k (p K ) P = Ek+ - (pé(pl-cf_)ki)

(5.35)

without instantaneous parts. Before we proceed, we introduce again internal and external
variables which facilitates the separation of the different orders, counting powers of ¢ :

k* apt, (5.36)
kL= @pl+qL (5.37)
pi = ap'+df + gt (mp;ql q%;TQ) : (5.38)
W= (Pt (pr;qL 2;21(1: Ti)) , (5.39)
The barred p-momentum has the minus component: p~ = 2’;%. It is part of the lowest

order in the Taylor expansion around p? = 0, see eq. (5.24). To remove all the divergences, the
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integrand should be differentiated three times. We will follow a different procedure. Because the
separation of the different degrees of divergence makes the calculation lengthy and complicated,
we will use a method which boils down to the same subtraction, but allows us to see which
terms are removed where and when, while differentiations acts as an almost black box. Upon
differentiation terms are removed without a clear view on the algebraic structure of these terms.
Since the only p~ dependence is in the denominator we can see which terms would drop under
differentiation. These are the constant, linear and quadratic terms in an analytical expansion
(around p? = 0) of the denominator:

oo

1 1 x(1-— x)p2>J
I = = — —_— ) . 5.40
GO =) ) 2 ( me T (5:40)

We see that the removal of the constant term is equivalent to multiplying the integrand by a
factor z(1 — z)p?/(m? + ¢% ):

Fr(p?) = F(p?) — F(0) = / 1 dzd?q (M> I. (5.41)

0 m2+qi

Apparently, the procedure of differentiation followed by integration with respect to the variable
p~ is equivalent to the calculation of certain moments of the variable z(1 — z)p?/(m? + ¢2 ).
Note also that in this (covariant) calculation the singularities in the longitudinal direction are
lowered at the same time as the divergences in the perpendicular direction. This an even
more easy way to calculate the scalar loop (sect. 5.3.1). At each differentiation or calculation
of a higher moment, the divergence in the perpendicular directions is lowered by two. The
symmetries are maintained under differentiation and subtraction: rotational symmetry in the
¢1-plane, and the symmetry with respect to the interchange of z and 1 — z. The calculation
of a higher moment is equivalent to subtracting certain low-order terms in a Taylor expansion.
(See also the section on counterterms sect. 5.5). For the minus components of the four-vectors,
egs. (5.38, 5.39), we can do this immediately:

2
T _ 1 pt+ (PL-4L (x—1)p 5.49
Py zp" +q +g ( p ot (5.42)

2

v —v v v pL-qL rp
Py = (@—-1p"+qf +g"" ( e —2p+) : (5.43)

We separate the different terms by performing the trace:
AT = Te[y"(pr +m)y" (P2 +m)] = 4(g"" (m* — p1 - p2) + PPy + P5pY). (5.44)

Owing to the rotational symmetry of the denominator, terms in the integrand with (g, )? will
lead to the same answer as those with %qi If we use this symmetry the trace yields:

2 2
L q. +m 2
T = 2 — DopHp¥ R B
z(z — 1)p"p” + g (2:6(1 — ) QJ_>
gpret gt g

* pt pt
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v 51042 +pusv,.2
g "pp g "pp
+ (22(1 - ) 1)( e >
p4
(2p)*

+ 2z(z—1)gTHg™ (5.45)
For the terms without ¢2 -dependence we calculate the first moment, for those with ¢3 de-
pendence we calculate the second moment. The m? terms are treated in the same manner as
the g% terms since in a Taylor expansion in p? the mass acts as an internal variable. Here we
see that the mass is treated as internal variable. The integrals give us the finite part of the
vacuum polarization:

T 2m? 4 p?

4 (p) = (¢""p* — p"p*) 1(p*) — I1(0)] = (¢""p* — p"p”) (1—8 + Tf’) . (5.46)

5.4 Ward-Takahashi and vertex corrections

In the self-energy diagrams there is only one external momentum and the fraction of the
longitudinal loop momentum plays the role of a Feynman parameter. In the case of one-loop
three- and four-point functions there is still only one longitudinal momentum, but in a Feynman
parametrization there would occur more Feynman parameters. In our regularization scheme,
where we differentiate with respect to the external momenta we acquired additional freedom,
since we can choose with respect to which external momenta we differentiate. If a diagram
is only logarithmically divergent, one differentiation is enough and we would have fixed the
value of the amplitude for one external momentum while the others run freely. This choice is
a freedom we have.

The remnant of current conservation, the Ward-Takahashi identities (Ward, 1950), (Taka-
hashi, 1957), fixes this freedom for gauge theories. It tells us how to do our differentiation
and integration in order to keep the result gauge invariant. In the covariant case the Ward-
Takahashi identities can be formulated as identities among integrands (de Wit & Smith, 1986).
If we start with a self-energy diagram of a specific order and momentum p, the vertex function
of the same order can be obtained by attaching a photon line, with momentum ¢, to the self-
energy diagram at all possible fermion lines in the (truncated) diagram such that the outgoing
momentum is p + ¢. If we now apply the identity

p+m p+g+m ¢+mq ptHg+m

Pom (ptqP-m?  p? (p+q)* —m?
to all the diagrams at the places where the photon line is attached, we see that we end up with
the difference of the (truncated) self-energy diagrams with momenta p and p + ¢q. Sometimes
we must shift the internal momenta to make this apparent; closed fermion loops in the diagram
do not contribute. If we have chosen a proper regularization, this relation among the integrands
should lead to the same relation among the integrals:

T (p,p+q) =S (p) — =™ (p+q). (5.48)

Similar relations can be established among the integrands of time-ordered diagrams. If our
regularization procedure does not destroy this relation we automatically satisfy the Ward-
Takahashi identities. Therefore we should differentiate the integrands only with respect to p—,

, (5.47)
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Figure 5.2: The Ward-Takahashi identities can be satisfied for each of the time-ordered diagrams,
in their appropriate physical sectors, but only after inclusion of the instantaneous parts.

not ¢—. This is nothing special since Ward derived the ¢ — 0 limit of the Ward-Takahashi
identity in a similar way (Ward, 1950). There are no problems with the shift of coordinates here,
since the minus momenta are fixed in a time-ordered diagram. The one loop vertex correction
is related to the fermion self-energy diagrams in the Feynman gauge, see fig. (5.2). One should
take proper care to include the instantaneous parts of all the diagrams (0 < kT < p™):

—k1)24+m?2 o 5 -
Rl AN (SR 15 (5 - k) + m)

2(pt — k) 4(p+—k+)k+(p*—%f%) (5.49)
iyt (PR =R |5 (4 G~ K) +m),
2T =Y e gt - ki (pm + g - Bk - o
=" 2 +’yi/€+ + (7+%+7'(i’_€)+2)
p ) a(pt - k)(pm - By )
v+ (yrlogtah b |5 (54 G~ F) +m)
f 2(pt +qt —kT) " A(pt + gt — kH)kt(p— + ¢ — Betezh)m? k] ) T

2prqT—kT) | 2T

If p* + ¢ > k* > p™, only the integrand of the self-energy diagram with the momentum
p + q contributes to the integrand identity:

—k1)%2+m? S (G d—k
O g B
o —ky)2+m2 K3\ .
A(p* + g+ — KDk (p~ + ¢ —%_ﬁ)
ki—p)?+m?® | o = 7
N (o (RT3 = F) 4 m)
v

X

+
_ _ ki— 24m?2 —k1)24+m?2
2(p+ k+) 2(p+ - k+)(q — E(kﬁi)pj) - (pé(;iifri)kir) )
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—k,)%+m? — — - ¢
(vt —(péa?ﬁrﬁi)ki) —+7-(F+q7—k)+m)
k2 ’YH

A(pt + gt — Kkt (pm + g — Byte st S

In order to see how the regularization of the electron self-energy fixes the regularization of the
vertex function we can best look at the truncated amplitudes, see eq. (5.22):

¢ (pp+4q) =, (p) = Xr(p+ @) (5.51)

We want to separate in the integrand of the vertex function the parts which give rise to different
electron self-energies. If we separate the differentiation with respect to p~ in two pieces:

B B ) B
_ _ g 52
op~ (81? 8Q> - dq=’ (5.52)

the separate terms in the r.h.s. of eq. (5.51) vanish under the different terms in the differenti-
ation eq. (5.52). The lower integration limit of each term is now determined by the self-energy
renormalization X,.(0) = 0. Also note that we do not have the same difficulties with the flow of
external momenta through the diagram as in the covariant case, for in time-ordered diagrams
the external energy variable is fixed in each diagram (Wu, 1962), (Mills & Yang, 1966).

The differentiation and integration with respect to the two variables, eq. (5.52), lead pre-
cisely to the counterterms already obtained in the fermion self-energy diagram. Both act only
on a single energy denominator of the two denominators in the first order correction in the
vertex function. The subtracted part for each is the value of the integrand at p? = 0 and
(p+ q)? = 0, respectively. Hence the Ward-Takahashi identity is satisfied. Note the special
role played by the plus-component of the vertex correction I'", since it does not commute with
the differentiations:

0 0 0 0 g H
- 7 L - 7 w_ 2 1t
<3p‘ 861‘) ol o K@p‘ 861‘) =T ] (5.53)
0 0 g H
Yoo = 9 opu 9 pr
90 quT qu [8q_r + = r ] (5.54)

The first term must be integrated over incoming momentum, p, from the point where p? = 0,
the second over the outgoing momentum p + q. To remove the divergences of the vertex
correction, in a gauge invariant way, we should not only use different renormalization points
for the separate denominators, but we should also subtract and add a factor I'" /¢~

5.5 Counterterms

In the section on the vacuum polarization we introduced a moment formula to subtract the
lower order contributions of the integrand. This allows us to express the counterterms in
terms of integrals. After regularizing the diagrams, the infinite parts which are subtracted from
the diagrams, are added to the original Lagrangean to cancel against the counterterms(Muta,
1987),(Collins, 1984). The counterterms are infinite constants times expressions present in
the initial Langrangian. They arose in the diagrams we considered in earlier sections; respec-
tively ¢3 self-energy (C14?), fermion self-energy (Catpmip, C31ppyp) and vacuum polarization
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(CyF,, F7). These infinite numbers can be written in our regularization scheme as integrals
over internal coordinates.

1
1
c, = — | dad®q —, 5.55
! | 40 (5:55)
= -2 dzd —_— .
¢, Rt (5.56)
1 1—z
Cy = ded?®q) —————, 5.57
: / o (5.57)
! 22(1 — z)
cy, = — dzxd?q, —— 2 5.58
' | e G (5.58)

Note also the (integrable) infrared singularity in the electron self-energy for (z — 0,q, — 0),
which would cause complications for on-shell renormalization(Jauch & Rohrlich, 1955). Besides
these terms we have counterterms which are specifically associated with the singularities of the
instantaneous contributions. We saw that these contributions dropped automatically in our
regularization procedure. These terms need no special treatment in our scheme. We maintain
here that these contributions are meaningless and do not contain any physics.

5.6 Conclusions

We have dealt with the divergences and singularities in light-front Hamiltonian field theory that
are the result of local divergences. For these divergences we have defined a renormalization of
light-cone time-ordered perturbation theory. We have recovered the covariant amplitude with
light-cone time-ordered diagrams for the scalar two-propagator loop, the electron self-energy
and the vacuum polarization. Our method defines the regularization of the vertex correction if
we wish to satisfy the Ward-Takahashi identities. Ambiguities as the result of the longitudinal
singularities vanish.

Only after one has a proper method to remove all the local divergences one can deal with
infrared divergences, long-range effects and the strong-coupling regime. Often these two sep-
arate parts are intertwined in the discussions on the renormalization of light-front field theory,
as the result of a lack of proper interpretation and method to deal with the local divergences.
We hope that our way to deal with the local part of the theory will shed some light on the true
nonperturbative content of light-front field theory. The parts that are subtracted are infinite
local terms. They have no scale, therefore we avoided the use of renormalization group meth-
ods because there is no sensible way to approach a point nor an infinite constant. Although
some of the local structures look like potentials (infrared divergences) we have seen that these
can be accounted for in the proper way as local terms or discarded as artifacts.
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The relativistic Hamiltonian in the
bound-state problem

I n the earlier chapters we were concerned with formal aspects of light-front Hamiltonian

field theory. We argued our case from the perspective of field theory. Covariant field
theory was often the starting point of our investigation to ensure covariance of our results and
to resolve ambiguities.

In this chapter we will derive a relativistic Hamiltonian. This Hamiltonian contains phase-
space factors which are usually not present in the local Hamiltonian. However, they are nec-
essary to obtain results equivalent to the covariant ones. In different Hamiltonian approaches
some of these phase-space factors appear in different places; in wave-function normalization, in
form factors and in scattering phase spaces. All these phase-space factors can be replaced
consistently, in our formulation, by the phase-space factors in the interaction part of the
Hamiltonian. The states, on which this Hamiltonian acts, are normalized to unity, similar
to the quantum mechanical normalization. The presence of different Fock components, with
different numbers of particles, in one state is the major difference between field theory and the
quantum mechanical theory. Particle number is not conserved in field theory and consequently
components with different number of particles mix in the true eigenstates of field theory. The
phase-space factors are the logical consequences of the introduction of an equal time-plane
in covariant field theory which is a nonrelativistic concept which singles out the time direc-
tion in space time. Because of these additional phase-space factors of the integrals occurring
in the perturbative expansion, the convergence is better than the usual convergence in the
nonrelativistic cases.

The Hamiltonian is the evolution operator of the states and will therefore lead to a
Schrodinger equation. Because of causality the Schrodinger equation is a first order differ-
ential equation in time. Only the positive energy states evolve forward in time and there is no
ambiguity about the sign of the energy as there would be in the Klein-Gordon equation. Again
we will show that stationary perturbation theory will lead to results equivalent to the covariant
results derived with Feynman perturbation theory.

Ultimately we are interested in the bound state; we want to describe a system where the
lowest Fock components of the eigenstate contains two or more particles. In perturbation
theory such a bound state can only arise if an infinite number of interactions are summed.

97
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Furthermore, the bound state poses many, more or less, fundamental problems.

The earth and the moon mysteriously revolve around each other. They constantly change
their relative velocity and their relative position. The earth and the moon form a bound
system. If one introduces a potential, their movements will be described and predicted. With
the simple phenomenological input of a potential it is possible to describe many features of
bound states, such as the energy spectrum and the charge radius. However, a potential does
not tell us the nature of the interaction between the constituents, or its origin. We do not
know what makes the constituents stay together. The potential signifies a missing energy as a
function of relative position. The potential is a classical concept that seems to have survived
the "quantum-revolution.”

The potential transports momentum and energy from one constituent of the bound system
to another. However, since the introduction of quantum mechanics it is assumed that something
that carries momentum and energy must be a particle which can be observed independently.
The change in momenta of the constituents is the result of the emission or absorption of a
particle. This is generally a virtual particle that does not have enough energy to live for a long
time. Otherwise the particle will be emitted from the bound state. Although it seemed at first
as if the constituents were free and had no reason to stay close to another, the undetected
presence of the virtual interacting particles changes this picture drastically. However, the virtual
particles usually go undetected.

The virtual particle cloud which binds the constituents replaces the classical potential.
However, as it turns out, it is very hard to make this picture quantitative and one generally
tries to replace actual knowledge of the virtual cloud by a potential which should have the same
effect as the virtual cloud. This potential can either be a potential in the classical sense or the
kernel of the Bethe-Salpeter equation, which sums some contributions of particle exchanges
in a region forbidden for scattering. After all, if particles are bound, they cannot move freely;
they are off-shell. If only a finite number of particles are exchanged the constituents have no
reason to stay bound. After the last exchange the constituents move outward freely, or the
constituents cannot exist since there is not enough total energy in the system.

The creation and annihilation of particles is described within quantum field theory, which
is a local, dynamical theory. Local means that particles are created at a specific point in space
where the source is located at that time. Dynamical means that we consider time-dependent
processes such as the creation of a particle at one time and annihilation at another. Although
this theory has been very successful for the description of scattering processes, it is clear that
it is not so useful for the description of bound states. First, a bound state is a stationary state
which is only indirectly described by the summing over processes and the averaging over time
of a dynamical theory. Secondly, in a local theory the global properties, such as the relative
position of the constituents, are only available as indirect information; the theory does not
use the relative position as a variable to describe the system. However, after the dynamics is
solved we can also determine the relative position and other global properties of the bound
state, while in a potential picture many properties of the bound state can be inferred from the
potential without performing any calculation.

The picture that arises is similar to the picture of chemical binding. Two hydrogen atoms
bind into a hydrogen molecule because it is favorable to have an overlap between the wave
functions of their respective electrons. The interference between the wave functions push the
wave function outward or inward depending on the interaction and the wave functions. The
electron wave function plays the role of the virtual cloud in field theory. In quantum field
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theory the constituents share the virtual cloud which is energetically more favorable than to
have separate virtual clouds. The one-boson-exchange diagram approximation to the potential
can be seen as the first order interference term between the virtual clouds. The potential is not
a fundamental property of a particle but the net effect of the interference between two clouds
and can only be the result of two or more particles in each other's vicinity.

The virtual clouds, which surround particles, are the wings of a hummingbird. The wings
move too fast to be seen: however, they do make the bird move. We will study properties of
the virtual cloud in this chapter. Higher Fock states are well described by the tree diagrams
which constitute the lowest order approximation in coupling constant of the higher Fock state
given the lowest Fock state, or constituent part.

The virtual cloud is smeared with respect to the constituent state. This result is not trivial,
but follows from estimates of the tree diagrams. This nontriviality is enhanced due to the
dependence of the higher Fock state content on the frame or the time direction. In field theory
particle creation and annihilation are intertwined with Poincaré invariance.

In this chapter we will start with the concept of an equal-time plane in covariant field
theory which is necessary to define a state. We will write down the Hamiltonian for a general
field theory, both for the ordinary instant time variable and the light-cone time variable, and
make some remarks about the connection with covariant field theory. In the next section the
Schrédinger equation is derived with a Coulomb potential as the lowest order approximation
to scalar quantum electrodynamics.

We discuss the next-to-leading-order corrections to this result. More generally, it can be
shown that if one solves the Hamiltonian eigenvalue equation truncated to a specific number of
particles one generates all diagrams with at most this number of particles in each intermediate
state.

The next section is devoted to higher Fock states, in the light-front formalism, in a strongly
coupling field theory. We will show that combinatorics, virtuality and kinematics determine the
occupation of the higher Fock states. The distribution of longitudinal momenta is determined
largely by the higher Fock state occupations of the bound state. The presence of transverse
variables does not influence the results significantly which shows the peculiar mixing of particle
creation and annihilation, and covariance.

6.1 Time evolution in the space-time approach

The standard, covariant, formulation of scattering is the space-time formulation. It is based on
the pioneering work of Feynman who treated the spatial and the time direction on equal footing
(Feynman, 1949). The manifestly covariant amplitudes, which result from these calculations,
can be related to scattering amplitudes through the inclusion of noncovariant phase-space
factors. Central to this approach is the causal, or Feynman, propagator,

01T ¢(y)o' (x)|0) = D(y — ). (6.1)

Feynman noted that, while particle numbers are not conserved, the charge is conserved. Particle
and anti-particle, with opposite charge, can annihilate each other. If one follows the local
current, one will move forward and backward in time. The causal propagator reflects this
aspect. The time-ordering operator 7 picks out the forward evolution of the particle and the
backward motion of the anti-particle. Depending on the sign of the time component of y — x
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either mode can evolve freely. This can be seen from the momentum representation of the
causal propagator (sec. 2.5):

1 5 efi\/lc‘2+m2t+z‘l€»f e+i\/k2+m2t7iﬁ-f
D(Zt) =—— | k|t ——7— + () ———— 2
(1) (277)3/ 0 e U s (6.2)

If the particle interacts at different space-time points and evolves freely between those points we
can use the causal propagator irrespectively whether points along the route are chronologically
ordered. The causal propagator ensures current conservation and the proper dynamics. Instead
of the charge we can follow the energy flow for the same argumentation. However, we miss
the intuitive picture charge conservation supplies us with.

In quantum field theory the interaction is a product of fields. The field operators annihilate
and create particles at a specific space-time point. However, this cannot be interpreted in a
strict sense. If we separate the initial and the final point by a surface and annihilate and create
the particle when the particle passes this surface, the propagation will not be the same as the
direct propagation from the initial point to the final point. Even in the specific case where the
surface is the equal-time surface in between the initial point and the final point the ergodic
property does not hold, and the causal propagator does not describe the evolution of the fields:

D(zs — 21) £ /d%D(fg Gt —T)D(F —F1, 7 — ). (6.3)

The ergodic property means that the propagators are elements of a semi-group which is additive
in the time parameter. On the basis of covariance we could deduce that this relation could
not hold. An equal-time surface is a nonrelativistic object; integration over all points on that

surface gives a frame-dependent result. A phase-space factor, v k2 + m?2, which is nonlocal in
configuration space, restores covariance:

D(J?Q —.131) = /dSJ?D(fQ — Tty —T) 24/ EQ 4+ m2 D(f—fl,T —tl), (64)

as can be seen from the momentum representation of the propagator, eq. (6.2). A formulation
in terms of the free evolution, where one can evolve the fields from one equal-time surface to
the next without inclusion of phase-space factors requires that we allocate these factors in the
interaction part of the field theory, such that we can use normed fields and a norm-conserving
propagation. This is possible, as we will see below. The evolution of the fields is the evolution
of the positive energy components, since causality restricts the forward evolution to the positive
energy components (¢t > 0):

) Bk e, im2t
—iHg(s)t —iV k24+m2t—ik-Z :
o—iHo(s) /(2 e Vv = 2i0,D = T Ha(mv/5). (6.5)

where s is the square of the invariant length: s = t> — #2. This propagator is more singular
(Symanzik, 1981) than the causal propagator; however, it reduces to a local function for t — 0
such that for & # 0 the function vanishes. The classical relativistic dynamics was determined
by a second order differential equation in time, with field values and the time derivative of field
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values as initial conditions on an equal time surface. Due to causality only one initial condition
is necessary. Given the field, the time derivative of the field is fixed at the initial surface, t = 0:

=0 = g(@), (6.6)

OPli—o = —i\/k2+m?2 g(Z). (6.7)

The local field variables lead to nonlocal boundary conditions due to the implementation of
the second boundary condition as the result of causality.

We are primarily interested in a quantum mechanical formulation of field theory. Therefore
we define a state, |¢), which describes the correlation of all the particles present at one time,
t. If this state is an eigenstate, the evolution will only be a change in phase:

|w(fla e afnvt» = eiiEtW)(fla o a‘ffut = O)> (68)

The evolution of an arbitrary state is governed by the Schrodinger equation. The Schrodinger
equation can be deduced from Feynman’s space-time approach by taking a thin time slice,
At, of a Feynman diagram. |¢) contains the fields at this time slice. The fields evolve freely
between ¢ and ¢ + At, except when an interaction occurs. The likelyhood of an interaction is
proportional with At, and therefore small for short times. The relativistic evolution of a state
is given by:

v ran = [T H T e <1+ r?%) 6@, 1), (69)

where w; = \/k;2 + m2 the on-shell energy of a particle with momentum k and mass m;,
occurring in the phase—space factors. In the limit for At — 0 this reduces to

— — _ mt = =
aW(ﬂﬁlv”'aﬂUm - ZZW7 \/— W(xl» 7xnat)>7 (610)

which we call the relativistic Schrodinger equation. An arbitrary state, |¢;), is given by the fields
on an equal-time surface which does not contain an interaction. We see that the relativistic
Hamiltonian, H, which is generally assumed to be local has additional phase-space factors.
In a Hamiltonian approach the local interaction Lagrangian leads to a nonlocal interaction
Hamiltonian:

icint

v s
Hj:l A/ 2(4}]‘
where the phase-space factor contains the energies for all the lines attached to a vertex, hence,
for all the field operators in the interaction.

Hip = (6.11)

6.1.1 Time-ordered perturbation theory from the space-time approach

From the Feynman diagrams in configuration space one can derive the time-ordered diagrams.
First one has to multiply the amplitude with a phase rotation, e**", due to free evolution
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to bring the state in the Heisenberg representation. Secondly one has to integrate over the
intermediate time between two successive vertices allowing all possible times between zero and
infinity. This integration gives rise to the energy denominators:

7t — _ A - iET 4’k 3 1 *izjijfilg-(a‘;"ff) iy
[(&,t =0)) = Tve dre /H—(%)3 [[d?xe "~ (7).
(6.12)

This process has to be repeated until all the intermediate times are integrated out. The different
terms in the interaction give rise to different time-ordered diagrams. In the time-ordered
diagram each intermediate state is associated with an energy denominator, (E — Y w)~!, and
each line with a phase-space factor, (2w)™!.

6.2 Hamiltonian field theory

Central to most Hamiltonian approaches is the determination of eigenvalues, and eigenstates of
the Hamiltonian. With the eigensystem, i.e., eigenvalues and eigenstates, measurable aspects
of the physical system can de determined.

In most cases it is difficult to determine the eigensystem. Instead one uses the eigensystem
of a Hamiltonian which one can use as a basis and treat the difference, V', between this free
Hamiltonian, Hy, and the original Hamiltonian, H = Hy + V/, as a perturbation in which one
can expand the eigensystem.

The eigenstate |¢)) with eigenvalue E can be determined from the eigenstate |¢(*)) with
the same eigenvalue, E, of the free Hamiltonian:

=3 (25" O (6.13)

n=0

with: (E — Hy)|¢(®) = 0. This eigenstate expansion, central to the Lippman-Schwinger equa-
tion (Lippmann & Schwinger, 1950) has led a life of its own. One considers different terms
in the expansion to correspond to different “processes”’. However, in stationary perturbation
theory no process occurs. The time-ordered perturbation theory has no time-dependence. How-
ever, we can relate the different free states, which are parts of a true eigenstate, to outcomes of
scattering experiments, which are described with processes in Feynman'’s perturbation theory,
which is a dynamical theory.

The proper Hamiltonian interpretation of the scattering matrix, S, is the projection of free
in-and out-states onto the eigenstates of the perturbed Hamiltonian, and this for each energy
separately:

Sap(E) = (¢ (B) W (E)) (vt (B)|¢~ (B)(6~ (B)l¢y (B)). (6.14)

where 9~ and 9" are the in- and out-states of the perturbed system in the interaction rep-
resentation. Ordinarily the S matrix is defined as Su5 = (¥ (E)[¢5 (E)) (Weinberg, 1995).
(See also the discussion in (Bogoliubov & Shirkov, 1959).) However, it is assumed that the
interacting states reduce to the free states in the Heisenberg representation for long times.
In the case of bound states and self-interaction this cannot be true. Therefore the projection
onto the Heisenberg states is necessary to recover the degrees of freedom, such as momenta
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and polarizations, with which the system is described. The explicit dependence on the energy
reflects the adiabatic connection between free and interacting states.

The problems one may have with this formulation reflect many of the formal problems
of scattering theory. Formally, the different free states are components of a true eigenstate.
Therefore, starting in one free state, the system oscillates to other free states. In scattering
theory the oscillations are averaged over due to the long time between the initial and final
state. The occupations, in terms of the free states basis, of the perturbed eigenstate remain.

The essential difference between the quantum mechanical state and the field theoretical
states is that particle number is conserved in the first state, whereas it is not the field state.
Different Fock states are combined in one eigenstate. It is like saying that a hydrogen atom
consists of a combination of: the atom; a proton and an electron; a proton, an electron and
a photon; a proton, an electron and two photons; a proton, two electrons and a positron, etc.
Generally, we are not used to treating these different states as quantum mechanical degrees of
freedom of one physical object.

In practice, we will write the state in terms of eigenstates of the free Hamiltonian, which
is characterized by the momentum distributions of the particles:

= [@nlkr - k), (6.15)
n=0

where ¢,, is a combination of wave functions which contains n particles. A state is a sum of
different Fock states, each with a specific number of particles; each particle has its own wave
function, for which we use the plane wave with momentum k; here. This state is normed
nonrelativistically similar to the quantum mechanical state:

(W) = Z/ T @kaids(hr - k)lo(hr - ky)) = 1. (6.16)
7=0 n=1

Therefore the results will be directly related to scattering experiments, and projection operators
can be expressed in the sum over states. An exclusive measurement generally picks, projects,
out one of the Fock states, ¢,. Therefore, we will only indirectly notice the relative strength
of the different Fock states. For practical purposes we use normed Fock states different from
the Fock state occupations of an eigenstate, ¢,,:

Ky ey k) = (K|E) =68k — k). (6.17)

These states have only a formal meaning, since a plane wave is not normed; they are not
even functions in momentum space. The expansion of the eigenstate in free states can be
expressed as operations on the free states Fock basis, such as eq. (6.13). Consider a local
interaction, V, which creates an additional particle with momentum k, 1, on the particle with
initial momentum £J,. To describe a local interaction we use configuration space, while the
energy denominator, (E — Hy)~?, is defined in momentum space. Therefore we flip between
the two representations of states in each term in the expansion on the states:

(KIVIE'Y = (k|r)(r1 - rng1]| GO (rngr — 74, H Pl R, (6.18)
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where G is the nonrelativistic coupling constant. The plane waves are not normalizable’,
however, we will use the norm-preserving Fourier transform. In that case we are able to extend
the meaning of our formulae beyond their original scope, and maintain the proper unitary
normalizations:

fla) = 1FA @) = <= [ ak e 1k, (6.19)

Expanding eq. (6.18) in plane waves, we find:

G&3 (k! — ky — kn, L3k — k!
<k|;V|k"> _ (kn, ; +1)H]+,11 (k g). (6.20)
E—Ho Vor (B = i wy)

The momentum conserving delta functions tell us how the momenta thread through the dia-
gram. In the previous section we have seen that the interaction in the Hamiltonian formulation
has additional phase-space factors, which alter the matrix elements, and change the dimension
of the coupling constant from nonrelativistic, G, to relativistic, g:

P N R e een) | e )
( |ﬁ‘/r| ) = 3 el (6.21)
0 vV 21 1/8wk%wknwkn+1 (E — Zj:l wkj)

The state is normed nonrelativistically; therefore the higher Fock states are suppressed by
additional powers of the mass. Given the local Hamiltonian, H = Hy + V, the associated,
nonlocal, operators are given by:

v
V2o

k) Z\/Ej—l—m? (k| (6.22)

where V' is the original local operator associated with the local Lagrangian density. Similarly,
we find for the light-front Hamiltonian the operator representations:

v,

k) (K],

Hy

.
Ve = |k)=—==(K],
|>H¢2k_+<|
k2, +m2
Hy = |k e 6.23
0 |k) DTSt (k| (6.23)

However, in this case the connection between the configuration-space representation and the
momentum-space representation is blurred due to the spectrum condition, kT > 0, that is

INote the significance of this formulation; the particle has a local coordinate although its position might
be smeared. The quantum processes are local and cause divergences in the amplitude. The finite part can
be calculated afterwards and depends on the smearing of the position. Although it is my belief that it
should be possible to formulate the theory without these intermediate divergences, the present formulation
of local field theory does not seem to allow for such a formulation.
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peculiar for the light-front case. Therefore we cannot assign a proper meaning to the represen-
tation transformation (k™ Eﬁx‘,fl), since the delta function in the local interaction cannot
be represented by functions on kT > 0 (Schlieder & Seiler, 1972). Therefore it is not possible
to make sense in a simple way of the transform between the two representations (Leutwyler &
Stern, 1978). However, we know that the relations above hold, due to our investigations in
the third chapter.

The major difference between the equal-time Hamiltonian and the light-front Hamiltonian is
in the coupling to the different Fock sectors. In the relativistic theory the relativistic invariance
intertwines with the Fock state content; the particle numbers of a given system depend on the
frame in which it is observed. Due to the spectrum condition the vacuum fluctuations decouple
from the Hamiltonian. The spectrum condition requires that each particle, with positive pT
momentum, must have received this momentum from another particle already present, while
in the equal time formulation, particles can be created back-to-back from the vacuum if charge
and spin are conserved in the process. This can be easily seen from a field theory with only
three-point vertices, where we expanded the basis for the Hamiltonian in particle numbers.
While the band diagonal structure of the equal-time Hamiltonian is five entries wide,

Hy V |4
V. Hy V V
V. Hy V Vv
|4 V. Hy V |4
|4 V. Hy V |4
Het: 3 (624)
v V. Hy V
|4 V. Hy V
1% vV H

where V = g(27)~2 [](v2w) ! and Hy = 3w, the light-front Hamiltonian is only tridiago-
nal:

Hy V
V. Hy V
V. Hy V
V. Hy V
Hy = v Iéo I‘ffo v (6.25)
Vv H, V

vV  Hy

where V = g(27)~2 [[(v2k*)~! and Hy = 3(k% +m?)/(2k™). Therefore, the computa-
tional advantage is large, since each entry in the matrix is an infinite dimensional space of the
n-particle wave functions. Note also that the diagonal entries grow with the particle number,
which suppresses the higher Fock states in the low-lying energy eigenstates, due to the virtuality
of these higher Fock states.
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Moreover, in deep-inelastic scattering there are advantages related to the specific differences
in Fock-state contents due to the choice of time direction. In deep-inelastic scattering the true,
or laboratory, time direction goes to the light-cone time and the frame-dependent Fock states
will be more and more alike the outgoing states for higher and higher energies (Kogut &
Susskind, 1973).

6.3 The relativistic Coulomb potential

In order to check the usefulness of the results above we investigate the bound-state equation
of scalar electrodynamics. The lowest relevant Fock-state, ¢, consists of two particles with
opposite charge, e, which move back-to-back: El =k and EQ = —k. We cut the Fock basis
in such a way that we only allow for one extra massless particle. We can solve the eigenvalue
equation for the three-particle state, which leads to an integral equation for the two-particle
state, ¢o:

(E = 2wi) ¢2(k) =

2 / a3k ¢2 (k") — ¢a(k) (6.26)

(27r)3wk 4wk/\k—k’| (E—wk—wk/—|k—k’|) ’

where the kernel of the integral equation represents two exchange diagrams and two divergent
self-energy diagrams (see fig. 6.1). If the coupling, e/m, is weak 2, it will follow that E, <

|E| < m, and the two-body equation will reduce to the Schrédinger equation with a Coulomb

potential,
By + L ba(k) = ¢ /d3k’ L ba (k") (6.27)
T ) TR T 42n)3m? k— K27 ’ '

f the self-energy is also neglected. The binding energy E, = 2m — E. The Fourier transform
of the Coulomb potential is given by (Gel'fand & Shilov, 1964):

! . /d%ei’”1 = \/? 1 (6.28)
o T 7 |k|?

As we expect the differences between the nonrelativistic Coulomb potential and our kernel to
be the largest for s-waves we project on [ = 0, which gives us the one-dimensional integral
equation:

(B —2wi + X) ¢p2(k) = p2(K') .

(6.29)
The presence of the eigenvalue in the kernel of the integral equation should not surprise us.
We eliminated the three-particle sector in order to obtain an effective two-body equation. The
eigenvalue appears to regulate the infrared singularity of the Coulomb potential; if the two
particles are bound the state has an energy below the production threshold, away from the
singularity.

—e? /°° k:’dk:’1 {E+wk+wk/+k+k’|
n
0

4(2m)2?|k|wp Wi —E +wj +wpr + |k — K|

20ur scalar dimensionful relativistic coupling e is related to the electromagnetic coupling in Gauss
units, eqauss, by: €2/(16mm?2) = eéauss
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E-22) (O—= = 70—+ 0O—=+ "0O—=+_..0—

Figure 6.1: The diagrammatic representation of the bound-state equation with one massless
exchange particle.

The self-energy, %, is divergent:

e? A3k’ 1
Y = . 6.30
(2%)3/4wkwk/\kfk’| E—wp—ww—k—k) & (6.30)

However, the finite part goes like: &2 ~ €2/m2(Ey + k2/m) In(Ey/m + k2/m?), which is small
in the weak coupling limit.

6.3.1 Numerical results

We calculated the spectra corresponding to the non-relativistic Coulomb potential and the
effective relativistic two-body potential numerically. In order to estimate the effects of including
the energy dependence and using relativistic kinematics separately, we repeated our calculations
for three approximations: one with relativistic kinematics only, another with non-relativistic
kinematics, but including the energy dependence, the third one with the full effective two-
body kernel but still without the self-energy term. The corresponding kernels for the integral
equations are:

K(k, k' )non—rel, Eindep = 111“21_];:”, (6.31)
Kk K )vel mindep = w:ik IHHZt:H (6.32)
K(k, K )non—rel, Edep = In {%} (6.33)
S TR & el MG

In order to be ale to include the self-energy we had to renormalize it. We subtracted the value
of the self-energy for E = 2wy, such that it vanishes if the constituents share enough energy
that both can be on-shell. The integral can be performed analytically:

/OO UL [_EW’“”’C’ + [k + K|
0

= 6.35
—E+wp +wpr + ‘k - kl' ] subtracted ( )

[09)%

m? In[m) ! - fm—zln[ker] 2—w+ 2w —2E
-E4+k+w k—-w 2 m?  E(F —2w)+ m?

2

1 m
5 I[=E 4 20)(—E + 2w) (1 T CE—krw)k +w))
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me] (—F + 2% + 2) (1+ (_E+,€Ti)(k+w)>'

We can make an expansion of the self-energy, including the phase-factor wy, in k and find:

e2 m(E —2m) 2m — F
Z~ ot (B =} (m—E—Eln[ — D+ (6.36)

, €2 E3 — E?m +8Em? —2m?®  E?(E? —4Em+5m?). [2m—E 3
oy — 3 + —— In + O(k°).
1672m 6m(E —m) 2m(E —m)

If we expand in the binding energy, Ej, we find that for small and large values of Ej the
self-energy give large corrections to the integral equation:

o2 E, e k? Ey

The formula shows in the nonrelativistic approximation the major effects of the self-energy;
an attractive energy shift and scaling of the kinetic energy. For the cases we have examined
the net effect is a lowering of the energy eigenvalues. The self-energy vanishes for £, — 0
and £ — 0 due to our on-shell renormalization; however, for small values of E}, and k the
contributions are still considerable, and the expansion, eq. (6.37), will be inappropriate. The
results for a rather weak interaction are given in table 6.1. The colomns denoted by “non-rel,
E indep” ... “rel, E dep” correspond to the kernels given in egs. (6.31) ... (6.34) resp. In these
calculations the self-energy was neglected. The last column in table 6.1 gives the spectrum for
the complete model: kernel (6.34), self-energy included.

Table 6.1: Spectra for five versions of the Coulomb interaction. The mass is m = 2.0 and
the charge is eqauss = 0.1. The first five eigenvalues are calculated using a 10-dimensional
basis. All energies must be multiplied with 10~

non-rel rel non-rel rel rel

E indep E indep E dep E dep > incl
-0.500000 | -0.499734 | -0.482806 | -0.434737 | -0.5548556
-0.125000 | -0.124900 | -0.120705 | -0.098501 | -0.1325679
-0.055556 | -0.054483 | -0.053623 | -0.038999 | -0.0538246
-0.031250 | -0.031187 | -0.030142 | -0.018783 | -0.0266230
-0.020000 | -0.019992 | -0.019274 | -0.009359 | -0.0143953

Gl B~ WN S

The effects of relativistic kinematics and the energy dependence of the effective interaction
become more pronounced for a stronger interaction. Therefore we also calculated the case
where the coupling constant egauss has the value 0.5. The results are given in table 6.2, which
is organized in the same way as table 6.1. Both sets of results are also shown in figure 6.2.

It is clear from the two tables that the effects of relativistic kinematics, the energy-
dependence of the effective interaction and the self-energy become more pronounced as the
strength of the interaction is increased.
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The effect of using relativistic kinematics is well known and easily understood, so we shall
not discuss it here. Including the energy dependence is more interesting.\We see that it is
repulsive and that it changes the binding energy for the strong coupling case by ~ 30 %. The
reason for this repulsion is understood by comparing egs. (6.31) and (6.33). The appearance
of Ej, which is greater than zero, in the argument of the logarithm removes the singularity
in the forward direction. The latter reflects the infinite range of the non-relativistic Coulomb
potential. So its removal changes the behavior of the potential at large distances from 7~! to
r2.

Table 6.2: Spectra for five versions of the Coulomb interaction. The mass is m = 2.0 and
the charge is eqauss = 0.5. The first five eigenvalues are calculated using a 10-dimensional
basis.

non-rel rel non-rel rel rel

E indep E indep E dep E dep 3 incl
-0.031250 | -0.029539 | -0.021833 | -0.014631558 | -0.1060710
-0.007813 | -0.007546 | -0.005497 | -0.003463290 | -0.0690461
-0.003472 | -0.003384 | -0.002445 | -0.001399581 | -0.0625281
-0.001953 | -0.001912 | -0.001375 | -0.000684237 | -0.0611915
-0.001250 | -0.001227 | -0.000880 | -0.000360291 | -0.0603675

1B~ WN K|S

For strong coupling, the self-energy dominates. To our knowledge, this has not been
noticed earlier. However, Levine et al. (Levine et al., 1967) calculating the phase-shifts of the
¢? theory, using the ladder approximation in the Bethe-Salpeter equation, find also large effects
from the self-energy contributions. In the realistic case, where the spins of the fermions are
included, the self-energy is smaller for the upper components of the spinors, where cancelations
occur. This was illustrated before where we calculated the nucleon self-energy. (See sect. 4.9)
So we may expect that the large differences between the non-relativistic Coulomb spectrum and
the spectrum calculated using our effective two-body equation will be reduced in the realistic
case.

6.3.2 Beyond three-particle states

In perturbation theory the Hamiltonian for the two-and three-body states leads to the ladder
equation in the time-ordered theory, with the proper phase-space factors and self-energy cor-
rections. These diagrams are the only possible ones in the two and three-particle sector. If we
include higher Fock states, we will automatically generate all the appropriate self-energy and
exchange diagrams for the kernel of the integral equation. This can be seen if one inverts the
relations in the eigenvalue equation, Ev¢ = H1, between the n + 1 particle state and the n
particle state:

1S 1y’
Voo = —Hobni1 + Knt20ni1 = Opy1 = A jgo (KnHFo) Von = Kni1¢n.

(6.38)
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Figure 6.2: The lefthand spectrum visualizes the results of table 6.1. The righthand one corre-
sponds with table 6.2.
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The kernel, K, 42, of the equation for the n + 1 particle state is summed to infinite order
to obtain the kernel, K, 11, of the n particle state. If there are other methods to deal with
the truncated Fock space, one will see that these methods incorporates the standard integral
equations with (multiple) exchange diagrams.

6.4 Higher Fock states in the light-front formalism

In the previous sections we defined the relativistic Schrodinger equation, and applied this
equation in the weak coupling limit to derive the relativistic version of the Schrédinger equation
with a Coulomb potential. If the coupling is stronger these approximations cannot be made and
the picture of the bound state will change drastically. First, the binding energy is in the range of
the masses, relativistic effects, and effects such as recoil and energies carried by the exchanged
particles, become important. Secondly, if a stronger binding occurs more exchange particles
will be present at the same time, and the “potential” would arise from coherent processes of
emission of several virtual particles. However, the simple potential picture corresponds to the
instantaneous emission of one field quantum. This simple picture will be unrealistic.

Little is known about these generalized potentials, apart from the quantized version of
the classical asymptotic Coulomb field first studied by Dirac (Dirac, 1974), and some indirect
knowledge due to the studies of coherent states in quantum mechanics.

The Hamiltonian approach is well-suited for the study of strongly interacting theories. In
this section we will study these aspects for massive ¢> theory. The actual theory is not so
important at this level since the major contributions to the higher Fock states are due to the
trees where the type of theory only results in additional combinatorial factors. Although we are
considering strongly interacting theories, we will use perturbation theory. Quantum field theory
is only a formal theory without additional assumptions which make it calculable. In order to
implement quantum corrections one has to start with an unperturbed ground state. Generally,
this ground state is the free vacuum. Apart from the Higgs mechanism very little is known
about implementation of other ground states in a full calculation.?> Our results legitimate
this starting point, because, as we will see, the kinematical factors will outweigh the coupling
constant for the higher Fock states and suppress these eventually. The content of the higher
Fock states determines the true nonperturbative content of the theory which is dynamically
generated.

This section will illustrate some of the ideas of a quantum mechanical approach to field
theory. We aim to invoke an intuitive picture where a stationary state makes sense and the
calculations have a more direct interpretation in known objects. This requires the introduction
of a state which is the superposition of different Fock states. A constituent can be ssen as
the sum of one particle in the lowest Fock state and virtual states with more particles which
couple to this particle. Interaction is not so much a matter of coupling, as it is a matter of
correlation between the different constituents.

The weak coupling approximation is used in many cases, even in cases where the coupling
constant is rather large (Wilson et al., 1994). In this section we will investigate how kinematics,
combinatorics and virtuality of states play a role in the occupation of the higher Fock states,
and how this influences the results of deep-inelastic scattering experiments. The weak coupling
limit can be related to the occupation of the higher Fock states; if the population of a higher

30ne might also ask oneself how to define an S matrix with a background field.
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Fock state is much less than the lower state:
> 0> i > P > (6.39)

we can argue that the wave functions and occupation of the higher Fock states is dominated by
the tree-level results. This is the case in a weakly coupled theory, which means that different
Fock states are coupled weakly. We will make this discussion more quantitative in this section.
As a first approximation to each Fock state we consider the tree level result. In order to do
so we have to assume some wave function for the lowest (or lower) Fock states. The bound
state, a composite particle, is approximated by an elementary particle which couples to the
constituents below the production threshold where the constituents can be on-shell. So we
consider the n particle Fock states generated from the same trunk; the “elementary” bound
state.

This approximation of the lowest Fock state gives reasonable results. A bound state with
small binding energy, compared to the masses, has a wave function dominated by the low
momenta, while a strongly bound system is dominated by the higher momenta, as determined
by the phase spaces. Moreover, if the bound state has a total momentum different from zero,
the tree diagram will account for the lowest order correction due to the Lorentz contraction of
the wave function. This can easily be shown.

Lepage and Brodsky found that the lowest Fock states dominate® the cross section in exclu-
sive hard scattering (Lepage & Brodsky, 1980). The higher Fock components are suppressed
because of small wave function overlap. In exclusive processes in QCD this corresponds to
one-gluon-exchange between the constituents which dominates the high-momentum tail of the
wave functions. In this section we examine the bound state, where the higher Fock components
cannot be discarded a priori, as we are interested in the wave function for all values of the
momentum.

As said before, at tree level the higher Fock states, ¢,, are determined by kinematics,
combinatorics and virtuality. We will use the light-front formalism since then the kinematics
and the virtualities are determined largely by the longitudinal momenta; the transverse momenta
play a minor role. At tree level, the results are equivalent to the covariant results, apart from
the phase-space factors of the outgoing particles which depend on the time direction.

The number of diagrams for an n particle Fock state grows extremely rapidly. In ¢ theory
one finds that

I(n —1)!
the number of trees is (%) . (6.40)

However, the contribution of each tree decreases with j and n in

Gjin(E) = (Z tree> 0, (E), (6.41)

all

which is nothing else but eq. (6.13) where the interaction V' only increases the number of
particles. The kinematical domain in the longitudinal momenta, kzj+ = ij+, is bound by the
spectrum condition: z; > 0 and ) x; = 1. P* is the total longitudinal momentum in the
system. We can examine the properties of the wave functions at the boundaries of this domain.

4This is a gauge-dependent statement, and a priori only true in At = 0 gauge.
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(a) (b)

Figure 6.3: (a) The fully branched tree, (b) the one branch tree.

One can easily show that at the faces of the boundary of the kinematical domain the wave
functions vanish, while in the corners integrable singularities occur, which are to leading order:

|¢n($7"',$,$]‘+1"',$n)> ~ l‘_%j+2, (6.42)
z— 0

where (x; # 0). Numerical studies show that ¢,, can be approximated in most of the kine-
matical domain by a constant function of the longitudinal momentum fraction, z;. This can
be used to study the influence of kinematics on the different Fock states. The boundaries
influence the distributions of longitudinal momenta only little. This will be shown later.

A constant wave function is an uncorrelated wave function. In order to study the dynamics
of binding one has to include correlation, which is essential for binding. At the moment we are
not concerned with the precise mechanism of binding.

Trees with different topologies contribute differently to the wave function. The largest
contribution is from the fully branched tree, while the one-branch tree contributes the least
(see fig. 6.3). In order to estimate the wave function, ¢,, we assume the wave function to
be constant and the largest contribution to the tree diagrams to arise when the longitudinal
momenta are equally distributed.®> The large contribution of the fully branched tree to the
wave function legitimates this assumption. In the fully branched tree the momenta are equally
distributed in the lines. The center of the kinematical domain of the virtual state ensures
that for each intermediate state in the tree the largest contribution is due to the center of
this kinematical domain as well, since the momentum of each intermediate line is fixed by the
momenta of the final lines of the virtual state. So for the wave function ¢,, we assume that

5This leading contribution is quite opposite to the leading contributions in deep-inelastic scattering,
where the momentum flow favors the one-branch tree, which give rise to the ladder diagram. This shows
that deep-inelastic scattering surveys the corners of the kinematical domain, which are not essential to the
binding mechanism in strong-coupling theories.
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each particle carries longitudinal momentum n~'P*. Then, for each new branch in the tree
we get a phase-space factor, n/(2P%), and an energy denominator; 2P+ (n?m?)~!. The initial
energy is neglected since it cannot compete with the virtuality, which grows like n2. We neglect
the correlation between the transverse momenta, sum all the trees and find an approximation
for the n particle state.5 A slight adjustment gives the result practical value:

T(n)g"'var ' "
2+ (aD)2m? + ()2 + (a3 2] [m? + (af) -~ (gp)?]

Strictly speaking an additional factor j+ 1 would occur for each of the masses in the denomina-
tor, where j is the number of transverse momenta in that particular factor in the denominator.
However, one cannot perform the integrations in that case, and that formula would have little
practical value. Later we will estimate the error due to our adjustment.

Any additional effects due to boundaries, correlation, etc. will be of the order of some
constant to the nth power, which can be incorporated in a change in the coupling constant.
T'(n) is the combinatorial factor signifying the number of ways branches can grow on the tree.
Because of the slight change, we have underestimated the masses in each of the denominators.
We take the wave function constant in the longitudinal momenta. In the full calculation the
wave function peaks slightly in the middle of the kinematical domain for lower Fock states,
while it peaks at the boundary for the higher Fock states. This peaking is the result of the
phase-space factors which will dominate for high virtualities, while for the low Fock states the
energy denominators determine the overall feature of the wave function. Similar results were
found in a phase-space analysis by Kuti and Weisskopf (Kuti & Weisskopf, 1971).

We find

fn = (6.43)

Q(n—l)

<¢n|¢n> = 53(n— 1)71—2(71 I)F( )mz(n,1)7 (644)

using the Dirichlet integral (Whittaker & Watson, 1927):

ool ano1 _ D)+ -Tlam) [ a-
/dx1~~~dmnf(x1+-~-+xn)x1 " n 1_F(a1+...+an)/o de(T)TZ g
(6.45)

where z; > 0 and > z; < 1, and also:

/ d2 Ld2 1 d2qn L B (ﬂ_)n 1
2 + (¢0)22[(m2 + ()2 + (@222 [m2 + (q-)2 - (¢ )22 D(n)ym2(—1"
(6.46)

6I’'m obliged to comment on the pathology of ¢° theory (Baym, 1959). We are interested in the
momentum flow through the trees and the contributions of different trees, therefore we neglected spin and
other stuffings of the diagrams, and ended up with a theory which is considered “sick”. If one considers
the constant field mode, k = 0, one can add an arbitrary background field: ¢>(k =0) — ¢(k = 0) +a which
lowers the energy. The theory has no ground state. In high orders of perturbation theory one should feel
the consequences of this feature. We will see that the wave function grows factorially with the number
of particles for ¢(k = 0). However, the occupation probability remains finite since the region around

k = 0 becomes smaller and smaller in the phase space of more and more particles. Moreover, since we are
considering a state with a definite longitudinal momentum there is no direct coupling to the vacuum, and
our results are not influenced by the instability of the vacuum.
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Given the wave functions, ¢,, we can calculate the distribution of the momenta. The self-
energy has to be renormalized, since the expectation value of (g*)? is infinite. However, we
can neglect the infinite contribution of (gi-)? which is the same for each tree and retain the
finite part:

(Gal D0 —a)lon) = (0= D= 2)"(ulé)
j=1

n—1

(Gal 5 (@ Plon) = m(6ulon) (6.47)

Jj=2

Since we underestimated the masses in each denominator it is possible that the expectation
value of the transverse momentum square has a logarithmic dependence on the particle number:

n—1

Z(%‘L)ﬂ@z) ~ m*(¢n|¢n) Inn . (6.48)

=2

(6l

n—2
The longitudinal momentum is contracted at z = 0, which constitutes a smearing of the wave
function along the associated light-like direction in configuration space. The smearing of the
longitudinal space variable is not compensated by a contraction in the transverse direction,
and the higher Fock states are extended in configuration space with respect to the lowest Fock
state. This result is not obvious and might depend on the precise choice of theory. Commonly
this smearing is assumed to occur, in analogy with the potential picture, where the exchanged
particles generate a cloud around the constituents and thus account for the spread of the higher
Fock state. However, there is little ground for this assumption. It might well be that the precise
dynamics of binding depends on the spread of the higher Fock states. In one case these higher
Fock states might form the background field through which the constituents move; in another
case the constituents can be screened by the higher Fock states and only generate an effective
charge.

We can elaborate on the distribution of longitudinal momenta. The gross behavior of the
distribution, away from the end points, is dominated by the particle number. If we introduce
the uncorrelated one-particle wave function, z§, which pushes the distribution to the end points
for @ < 0 and inward for a > 0, we will find that the general behavior changes only slightly
(a ~0):

/dxl.dxn_l(l_xl._l‘n_1>ax?.xg71 =
(14 a)" ! /1 _ _ I(l+a)"
dr(1 — a_(n—1)(a+1)—1 e Sl VA 6.49
M- D+ 1) Jp T NOEEST RN

while the end point, (z — 0), behavior can change considerably:

(14 )" 1z (1 — z)(-Dleth-1

/ day - deg1d(w—a;)(1—a1 - —2n_1)af 2y = L((n—1)(a+1))

(6.50)
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The latter integral is calculated by scaling the momenta: z; — (1 —)z. The integration over
x; results in the Dirichlet integral over the reamining variables. The correction to lower Fock
states can be approximated with a larger value of a (o ~ 1) than the value of a (a ~ 0) for
higher Fock states (Kuti & Weisskopf, 1971).

The tree diagrams were our first estimate to the Fock state contents of a given bound state.
Corrections to these results are radiative corrections with additional closed loops. Expanding in
the maximal number of particles and the number of additional loops, we find the first correction
to the bound state energy in the form of the expectation value of E — Hy,

Soh = (B - Ho)lw) , (6.51)

which would be the same result as in field theory if we calculated v exactly from the different
trees. All the loops are due to contracting the bra and the ket. Additional loops would
correspond to higher order corrections of lower Fock states. However, we are concerned with
the general behavior for high Fock states. The higher Fock states are influenced less by the
(finite part of the) radiative corrections. Note that the infinite part affects all states alike by
changes in masses and coupling constants. Since these states are highly virtual, the actual
energy of the trunk has little influence on the finite result. If we use the following trick:

! L viov—l _vie, (6.52)

nE/ =
W)= e Ve m E— H,

and expand this expression in powers of E’/Hy, we will find the finite part of the radiative
corrections to the lowest order:

27’7" / dEl |w E+Z ¢]‘¢J> . (653)

Similarly, we find that the radiative corrections due to one loop insertions at a specific level in
the tree are suppressed, because of the extra energy denominators in the radiative corrections,
by the factor g%/((27)3nm?), where n is the number of particles at this level.

We can conclude that, while the lowest Fock states can change much due to radiative
corrections, this is not the case for the higher Fock states. The scale is naturally given by the
wave functions of the lowest Fock state. Therefore, radiative corrections are restricted to the
energy, corresponding to this scale. Hard processes do not occur, therefore no other scale is
introduced. We saw that the higher Fock states, which are highly virtual, are not influenced
much by the quantum corrections.

6.5 Conclusions

If we want to understand the bound state in field theory we will have to replace the potential
picture by the virtual cloud picture. The Hamiltonian formulation is most suited to gain insight
into the virtual cloud picture. The virtual cloud is the unseen part of the bound state, and,
for that matter, the unseen part of all particles. Because of the interaction, a particle couples
to multi-particle states which spread around the original particle. These higher Fock states
belong to actual content of the physical particle. Although we describe the constituent by the



6.5. Conclusions 117

coordinate of the particle in the lowest Fock state, we must be aware that this particle is not
the constituent but only a part of the constituent, i.e. the lowest Fock state. The higher Fock
states determine the range of influence; the strength and the range of the interaction.

The connection between Hamiltonian field theory and covariant Langrangian field theory
has been unclear. The local Lagrangian density leads to a nonlocal Hamiltonian as the result of
causality. Causality results in the implementation of the second boundary condition, eq. (6.7),
of the relativistic wave equation. The additional phase-space factors improve the short-distance
behavior of the theory. These phase-space factors make some of the so-called nonperturbative
form factors superfluous.

We have seen that to low orders in particle number this wave function picture gives a good
approximation for the Coulomb potential. The infrared singularity of the Coulomb potential is
regulated by the binding energy. Additional corrections occur when the binding energy is of
the same order as the constituent mass.

The features of the virtual cloud, which can be a relatively large part of the physical wave
function, is studied in the light-front formalism. The kinematics will outweigh the coupling
constant for high Fock states such that these high Fock states are suppressed even for a coupling
constant of the order one. In a bound state there is only one scale; the scale of the lowest Fock
state wave function. This scale determines the constituent masses, which is the particle mass
with self-energy corrections due to binding, since the particles are bound they are off-shell.
The sum of the masses is larger than the mass of the bound state. In a covariant formulation
the dynamics is related to scales. In the virtual cloud picture one has to ask the question
how much the clouds are part of each constituent and how much is shared as a background in
which all the constituents move. If the clouds are parts of the separate constituents they will
be described by the properties of the lowest Fock state particles separately and thus can be
interpreted as self-energy corrections and screening, i.e. as scaling of the particle properties.
The breakdown of the scale picture in the covariant theory signifies which part of the cloud is
shared among the constituents. At very large length scales the system is chargeless and the
virtual cloud vanishes.

In the last section we have seen that the high Fock states form a background with respect
to the lower Fock states. The overall distribution of the longitudinal momentum is determined
by the Fock states occupations, while the distribution of the transverse momenta remains the
same for all the Fock states.

The Hamiltonian formulation is consistent with known results. It increases our understand-
ing of field theory, and allows for implementation beyond the realm of perturbation theory. The
potential picture can be replaced by a more accurate picture of higher Fock states. In terms of
higher Fock states, the potential is the energy density change due to the interference between
the virtual clouds which surround each of the constituents.
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Summary and conclusions

I n this thesis different aspects of Hamiltonian field theory are discussed. The greater part
of the thesis deals specifically with light-front Hamiltonian field theory. Although, as is
shown in the second chapter, classical light-front field theory is ill-defined, still it is possible
to establish a proper one-to-one correspondence between light-front perturbation theory and
covariant perturbation theory. This correspondence constitutes a proof of equivalence between
covariant field theory and light-front field theory, and is dealt with in the third chapter.

Chapters 4 and 5 deal with renormalization. A general discussion of dimensional regulariza-
tion and its application to time-ordered perturbation theory forms the essence of chapter four.
Chapter 5 deals specifically with the features of divergences in light-front perturbation theory.
A renormalization procedure is proposed which deals with the transverse and the longitudinal
singularities in the same manner. The procedure is illustrated with a number of examples.

Some conceptual problems are discussed in chapter six. We derive a relativistic Schrodinger
equation from Feynman's space-time approach. This motivates the rules for “old-fashioned”
perturbation theory as given by Weinberg (Weinberg, 1966), and establishes a relation with
quantum mechanics and phase-space factors in scattering theory. The results from Feynman's
space-time approach and stationary perturbation theory, ¢ la Lippman-Schwinger, are equiva-
lent using this Hamiltonian.

Conceptual problems were already present from the onset of light-front field theory, when
Weinberg showed (Weinberg, 1966) that only some physical processes, each represented by
an ordinary time-ordered diagram, contribute to the Feynman diagram if this diagram was
calculated in a frame that moves with the speed of light (Kogut & Susskind, 1973). This so
called infinite momentum frame (IMF) cannot be connected to any other reference frame by a
finite Lorentz transformation. Thus, a limiting procedure is involved. This limit has to compete
with other limits present in field theory: infinite space integration, regularization of singular
expressions. Besides, problems might arise when we are dealing with fermions (Ahluwalia,
1992). That the IMF is naturally described with light-front coordinates is only apparent for
coordinates and momenta (Leutwyler et al., 1970). That only some diagrams survive (Chang
& Ma, 1969) is puzzling. However, we have shown that this, in general, is indeed true. Another
possible approach to light-front field theory is the direct quantization on a light-front. There
are many different ways to do this, which become more elaborate if the theories are supposed
to incorporate more features (Kalloniatis & Robertson, 1994). As a classical theory, light-front
field theory is ill-defined; the standard initial value problem on the light-front is overdetermined.
In addition, it leads to a non-unique evolution in time (Hormander, 1963) (see also chap. 2).
The first problem can be solved in principle through methods devised for the quantization
of constrained systems (Dirac, 1964; Hanson et al., 1976; Sundermeyer, 1982; Henneaux &
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Teitelboim, 1993). The second problem is more serious. One needs to separate degrees of
freedom associated with different evolutions, from the same initial value, in l.c. time and then
introduce constraints which can restrict the space of solutions to the one considered physical
on some grounds. This, in essence, is what people are dealing with when they introduce
zero-modes, degrees of freedom of which the evolution is unknown (zero or infinite?). This
problem is often disguised in practical calculations where a (p*)~!-singularity occurs (Maskawa
& Yamazaki, 1976; Tang, 1988; Burkhardt & Langnau, 1991; Griffin, 1992; Burkhardt, 1993).

Another way to quantize a light-front theory is to use axiomatic commutation relations on
a complete set of free fields (Jackiw, 1972; Ida, 1977; Schlieder & Seiler, 1972), an approach
guided by the results of current algebra (de Alfaro et al., 1973). On the light front, different
points with (Az, = 0) are light-like separated. The question arises what is the equal-time
commutator between fields: a delta function in = which violates covariance, or a sign func-
tion in x~ which leads to non-integrable fields (except at the loss of covariance) (Nakanishi
& Yamawaki, 1977). Whether such theories can describe physical processes has not been
established. This approach became less favorable in the late seventies.

The approach most favored nowadays is based on two methods: with the covariant results
in mind derive a "constrained Hamiltonian” (Kogut & Soper, 1970; Brodsky et al., 1973;
Mustaki, 1990). Due to zero-modes it is hard to make a one-to-one correspondence between
normalized states on a space-like surface and a light-like surface. As long as one deals only
with tree graphs all these problems are rather formal. The presence of loops makes them acute.
In loops one has to "sum over all states”. This rule forces one to consider states with p™ — 0.
The advantages of light-front field theory are paid for by the occurrence of problems. In the
approaches discussed here the problems arise in different forms and are dealt with in different
ways. They might be disguised as technical difficulties. Due to the fundamental nature of
these problems the final results depend strongly on the choices one has to make when defining
the (finite) theory, e.g., boundary conditions of fields quantized in a box (Neville & Rohrlich,
1971; Huang & Lin, 1993), or regularization of the (p™)~! singularity (Maskawa & Yamazaki,
1976; Tang, 1988; Burkhardt & Langnau, 1991; Griffin, 1992; Burkhardt, 1993). We also had
to make some choices. Wherever we had to do so, we emphasized the relation with Feynman
diagrams. In a manifestly covariant approach there is no (p*)~! singularity. It is a distinct
advantage of our approach that this singularity is absent too (see sect. 3.5). We seem to
have cured one of the diseases of light-front field theory. However, presently we do not know
whether our regularization procedure leads in all cases to the same answer as the covariant
approach.

In the fifth chapter we have shown that using the proper regularization procedure we recover
the covariant results from divergent diagrams. The additional divergences, which occur in light-
front perturbation theory, cannot correspond to Lorentz invariant objects and are automatically
removed when the finite part of the amplitude is determined. It seems that the longitudinal
singularities are similar to the gauge dependent parts in gauge field theories; they complicate
the calculations, but they should not influence the physical observables.

We have shown (see sect. 3.5.1) that in some cases there are (p™) contributions to the
S matrix. Maybe these terms indicate a coupling to the "vacuum” or they may represent
contributions which relate one version of light-front field theory to another by a finite renor-
malization. However, it would be good practice to try to separate the mathematical question
"how to calculate?”, from the physical one "how to interpret?”.

We consider the present situation in light-front field theory to be confused. We give three
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reasons for this point of view:
(i) The paucity of comparisons to standard covariant theories;
(i) The mixing of mathematical problems with physical ones;

(iii) The lack of consensus on what are the established results (with proper, mathematically
rigorous derivations).

Still, there are a five good reasons to work on light-front field theory:

(a) It is the only theory distinctly different from covariant field theory which allows for a
comparison at intermediate levels. Such a comparison increases the understanding of
both theories;

(b) It is the most natural way to describe nucleons in terms of quarks;

(c) Our understanding increases with each answer to questions that light-front field theory
raises;

(d) The spectrum condition suppresses the higher Fock states.

(e) It is a Hamiltonian formulation with states and time evolution. It invokes the same the
intuitive picture inherent in elementary quantum mechanics.

The sixth chapter presents an outlook. Here we discuss some of the aspects of (d) and
(e). First, we derive a consistent quantum mechanical picture and show that it leads to the
correct results for weak-coupling scalar electrodynamics. Secondly, we combine the quantum
mechanical picture with the light-front formalism and illustrate, with some calculations, the
intuitive picture that arises for bound states.

The explanation of experimental results is the main success of light-front field theory (Brod-
sky & Pauli, 1991; Brodsky & Robertson, 1996). Mainly due to the work of Hans-Christian
Pauli, Brodsky and collaborators, calculations in a Hamiltonian framework with a Fock state
expansion are feasible and competitive, however, the methods are not so elegant. The direct
numerical implementation makes the physics less transparent, in addition a large basis is often
necessary. Apart from extension of the basis it is difficult to systematically improve the ap-
proximations. Other improvements of the scheme are based on the analysis of the numerical
results. Conceptual developments of light-front field theory require a firm foundation and ele-
gant, transparent methods. Exact results rarely exist for physical systems, therefore systematic
approximations must be possible within the framework chosen.
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Samenvatting

Licht-front Hamiltoniaanse veldentheorie
covariantie en renormalisatie

L icht-front Hamiltoniaanse veldentheorie is de methode om processen die zich op zeer
kleine schalen afspelen te beschrijven, door een waarnemer die met de snelheid van het
licht reist. Maar een stoffelijke waarnemer kan niet met de snelheid van het licht reizen dus de
beschrijving is abstract. De voordelen van een dergelijke beschrijving zijn vooral praktisch van
aard en bovendien nog niet erg goed begrepen. Men zegt vaak dat het vacuum triviaal is, of
ontkoppeld is van de fysische toestanden.

Hadronische materie, dat is de materie waar kernen uit bestaan, is desondanks het best be-
grepen in het licht-frontformalisme. De materie lijkt te bestaan uit een paar puntdeeltjes en
een zachte wolk die de puntdeeltjes samenhoudt. Met enige experimentele informatie over de
zachte wolk kunnen veel experimenten verklaard worden en processen voorspeld.

In dit proefschrift worden de grondslagen van de licht-front Hamiltoniaanse veldentheorie on-
derzocht. Ondanks het feit dat de quantisatie, dat is de bewerking die van golven tevens
deeltjes maakt, een slecht gedefinieerd procedure is op het licht-front, is het toch mogelijk de
licht-front veldentheorie een stevig fundament te geven door haar te relateren aan de covariante
veldentheorie. De covariante veldentheorie wordt algemeen beschouwd als de correcte beschrij-
ving van processen op kleine schalen, omdat het verstrooiingsexperimenten, het botsen van
puntdeeltjes, uitstekend beschrijft. Maar de covariante veldentheorie faalt in de beschrijving
van de karakteristieken van hadronen. De karakteristieken die wij terugvinden en waarderen in
het licht-frontformalisme, namelijk, die van puntdeeltjes met de zachte wolk.

In het aantonen van de equivalentie van de covariante en de licht-front veldentheorie worden
veel problemen van de licht-front-veldentheorie opgerakeld; sommige problemen waren reeds
door anderen in een andere context gevonden. In dit proefschrift worden de meeste problemen
eenduidig opgelost door naar de relatie met de covariante veldentheorie te kijken, op sommige
vragen wordt er alleen een ander licht geworpen door dit verband te onderzoeken. In het bij-
zonder worden een aantal standaardtechnieken van renormalisatie kritisch onderzocht.

Dit proefschrift dient twee hoofddoelen. Ten eerste, het oplossen, of begrijpen, van de pro-
blemen die specifiek zijn voor licht-front-veldentheorie. Ten tweede, het bewijzen dat in onze
aanpak de licht-front-veldentheorie een goed gedefinieerde theorie is.

Hoofdstuk 1: Introductie

We geven een beschouwing over veldentheorie in het algemeen, en beargumenteren waarom
een Hamiltoniaanse aanpak beter dan covariante aanpak, op zijn plaats is voor de beschrijving
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van gebonden toestanden. We geven een simpel voorbeeld waarin de karakteristieken van
licht-front-veldentheorie naar voren komen.

Hoofdstuk 2: Partieéle differentiaalvergelijkingen en licht-front-veldentheorie
In dit hoofdstuk beschouwen we welke consequenties de keuze van beginvoorwaarden op het
licht-front hebben. Die consequenties zijn vergaand. De evolutie van een systeem is niet uniek,
en sommige oplossingen zijn singulier op het licht-front en kunnen daarom daar niet beschreven
worden. Het verschil tussen twee evoluties met dezelfde beginvoorwaarden is een nul-oplossing.
Deze oplossingen worden expliciet geconstrueerd voor de Klein-Gordon en de Dirac-vergelijking.
Tevens wordt aangetoond dat de singuliere oplossingen buiten de gebruikelijke integreerbare
functieruimten liggen. Deze eigenschappen voor licht-achtige beginvoorwaarden hebben grote
consequenties voor quantisatie en renormalisatie.

Hoofdstuk 3: Equivalentie van licht-front en covariante veldentheorie

In dit hoofdstuk wordt de relatie aangetoond tussen de storingstheorie voor de covariante
beschrijving van verstrooiing en de lichtkegel-tijdgeordende beschrijving van verstrooiing. Met
een algemeen algoritme kunnen Feynman diagrammen geschreven worden als lichtkegel-tijdge-
ordende diagrammen. De technische problemen en uitzonderingsgevallen zijn opgespoord en
geanalyseerd.

Hoofdstuk 4: Een andere kijk op dimensionele regularisatie

We analyseren de dimensionele regularisatie en komen tot de conclusie dat met behulp van
dimensionele analyse en differentiatie, de dimensionele regularisatie geformuleerd kan worden
zonder te referen naar een niet-geheeltallige dimensie. De regularisatie geeft eindige integralen,
zonder regulatoren. Het praktisch nut van deze techniek ligt vooral in de toepasbaarheid voor
Hamiltoniaanse theorieén. Tevens geeft het een andere kijk op dimensionele regularisatie.

Hoofdstuk 5: Renormalisatie van licht-front Hamiltoniaanse theorieén

In dit hoofdstuk geven we een regularisatiemethode om het eindige deel te bepalenvan lichtkegel-
tijdgeordende diagrammen. Hierbij maken we geen onderscheid tussen de longitudinale en
de transversale dimensies. De methode is gebaseerd op de Taylor-reeksontwikkeling van de
amplitude naar de externe impulsen. De instantane termen en de andere longitudinale sin-
gulariteiten worden automatisch verwijderd. We trekken hieruit de conclusie dat deze geen
betekenis hebben, maar een artefact zijn van de licht-frontformulering. We geven een aantal
voorbeelden; het blijkt dat altijd het correcte covariante resultaat gevonden wordt.

Hoofdstuk 6: De relativistische Hamiltoniaan in de gebonden toestand

In dit hoofdstuk wordt de relatie tussen de covariante veldentheorie en de Hamiltoniaanse
veldentheorie nader beschouwd. We concluderen dat de Hamiltoniaan die correspondeert met
een lokale Lagrange-dichtheid niet-lokale faseruimte-factoren bevat. Voor zwakke koppeling in
de scalaire electrodynamica leiden we de relativistische versie van de Coulomb-Schrodinger
vergelijking af. In het licht-frontformalisme onderzoeken we voor sterkere koppelingen de
bezettingsgraad van de hogere Fock-toestanden in een gebonden toestand. Het blijkt dat
de hogere Fock-toestanden kinematisch onderdrukt zijn.
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